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Abstract

Web application performance heavily relies on the hit rate

of DRAM key-value caches. Current DRAM caches stati-

cally partition memory across applications that share the

cache. This results in under utilization and limits cache hit

rates. We present Memshare, a DRAM key-value cache

that dynamically manages memory across applications.

Memshare provides a resource sharing model that guar-

antees reserved memory to different applications while

dynamically pooling and sharing the remaining memory

to optimize overall hit rate.

Key-value caches are typically memory capacity bound,

which leaves cache server CPU and memory bandwidth

idle. Memshare leverages these resources with a log-

structured design that allows it to provide better hit rates

than conventional caches by dynamically re-partitioning

memory among applications. We implemented Memshare

and ran it on a week-long trace from a commercial mem-

cached provider. Memshare increases the combined hit

rate of the applications in the trace from 84.7% to 90.8%,

and it reduces the total number of misses by 39.7% with-

out significantly affecting cache throughput or latency.

Even for single-tenant applications, Memshare increases

the average hit rate of the state-of-the-art key-value cache

by an additional 2.7%.

1 Introduction

DRAM key-value caches are essential for reducing ap-

plication latency and absorbing massive database re-

quest loads in web applications. For example, Face-

book has dozens of applications that access hundreds

of terabytes of data stored in memcached [24] in-memory

caches [41]. Smaller companies use outsourced multi-

tenant in-memory caches to cost-effectively boost SQL

database performance.

High access rates and slow backend database perfor-

mance mean reducing cache miss rates directly translates

to end-to-end application performance. For example, one

Facebook memcached pool achieves a 98.2% hit rate [9].

With an average cache latency of 100 µs and MySQL ac-

cess times of 10 ms, increasing the hit rate by 1% reduces

latency by 36% (from 278 µs to 179 µs) and reduces

database read load by 2.3×.

Today, operators statically divide memory across appli-

cations. For example, Facebook, which manages its own

data centers and cache clusters [9, 39], has an engineer

that is tasked to manually partition machines into separate

cache pools for isolation. Similarly, Memcachier [4, 18],

a cache-as-a-service for hundreds of tenants, requires cus-

tomers to purchase a fixed amount of memory.

Static partitioning is inefficient, especially under chang-

ing application loads; some applications habitually under

utilize their memory while others are short of resources.

Worse, it is difficult for cache operators to decide how

much memory should be allocated to each application.

This manual partitioning requires constant tuning over

time. Ideally, a web cache should automatically learn and

assign the optimal memory partitions for each application

based on their changing working sets; if an application

needs a short term boost in cache capacity, it should be

able to borrow memory from one that needs it less, with-

out any human intervention.

To this end, we designed Memshare, a multi-tenant

DRAM cache that improves cache hit rates by automat-

ically sharing pooled and idle memory resources while

providing performance isolation guarantees. To facili-

tate dynamic partitioning of memory among applications,

Memshare stores each application’s items in a segmented

in-memory log. Memshare uses an arbiter to dynami-

cally decide which applications require more memory

and which applications are over-provisioned, and it uses a

cleaner to evict items based on their rank and to compact

memory to eliminate fragmentation.

This paper makes two main contributions:

1. Memshare is the first multi-tenant web memory

cache that optimally shares memory across applica-

tions to maximize hit rates, while providing isolation

guarantees. Memshare does this with novel dynamic

and automatic profiling and adaptive memory reallo-

cation that boost overall hit rate.

2. Memshare uniquely enforces isolation through a log-

structured design with application-aware cleaning

that enables fungibility of memory among applica-

tions that have items of different sizes. Due to its

memory-efficient design, Memshare achieves sig-

nificantly higher hit rates than the state-of-the-art

memory cache, both in multi-tenant environments

and in single-tenant environments.

In Memshare, each application specifies a minimum

amount of reserved memory; the remaining pooled mem-

ory is used flexibly to maximize hit rate. Inspired by
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Cliffhanger [19], Memshare optimizes hit rates by esti-

mating hit rate gradients; it extends this approach to track

a gradient for each application, and it awards memory to

the applications that can benefit the most from it. This

enables cache providers to increase hit rates with fewer

memory resources while insulating individual applica-

tions from slowdowns due to sharing. Even when all

memory is reserved for specific applications, Memshare

can increase overall system efficiency without affecting

performance isolation by allowing idle memory to be

reused between applications. Memshare also lets each

application specify its own eviction policy (e.g., LRU,

LFU, Segmented LRU) as a ranking function [11]. For

example, to implement LRU, items are ranked based on

the timestamp of their last access; to implement LFU,

items are ranked based on their access frequency.

Existing memory caches cannot support these proper-

ties; they typically use a slab allocator [3, 18, 19], where

items of different sizes are assigned to slab classes and

eviction is done independently on a class-by-class basis.

This limits their ability to reassign memory between dif-

ferent applications and between items of different sizes.

Memshare replaces slab allocation with a new log-

structured allocator that makes memory fungible between

items of different sizes and applications. The drawback of

the log-structured allocator is that it continuously repacks

memory contents to reassign memory, which increases

CPU and memory bandwidth use. However, increasing

hit rates in exchange for higher CPU and memory band-

width use is attractive, since key-value caches are typi-

cally memory capacity bound and not CPU bound. In a

week-long trace from Memcachier, cache inserts induce

less than 0.0001% memory bandwidth utilization and

similarly negligible CPU overhead. CPU and memory

bandwidth should be viewed as under utilized resources

that can be used to increase the cache efficiency, which

motivates the log-structured approach for memory caches.

Nathan Bronson from the data infrastructure team at

Facebook echoes this observation: “Memcached shares a

RAM-heavy server configuration with other services that

have more demanding CPU requirements, so in practice

memcached is never CPU-bound in our data centers. In-

creasing CPU to improve the hit rate would be a good

trade off.” [16]. Even under high CPU load, Memshare’s

cleaner can dynamically shed load by giving up evic-

tion policy accuracy, but, in practice, it strongly enforces

global eviction policies like LRU with minimal CPU load.

We implement Memshare and analyze its performance

by running a week-long trace from Memcachier, a multi-

tenant memcached service [18]. We show that Memshare

adds 6.1% to the overall cache hit rate compared to mem-

cached. We demonstrate that Memshare’s added over-

heads do not affect client-observed performance for real

workloads, since CPU and memory bandwidth are sig-

nificantly under utilized. Our experiments show that

Memshare achieves its superior hit rates and consumes

less than 10 MB/s of memory bandwidth, even under

aggressive settings. This represents only about 0.01%

of the memory bandwidth of a single CPU socket. We

demonstrate that in the case of a single-tenant application

running in the cache, Memshare increases the number

of hits by an extra 2.37% compared to Cliffhanger [19],

the state-of-the-art single-tenant cache. To the best of

our knowledge, Memshare achieves significantly higher

average hit rates than any other memory cache both for

multi-tenant and single-tenant workloads.

2 Motivation

DRAM key-value caches are an essential part of web ap-

plication infrastructure. Facebook, Twitter, Dropbox, and

Box maintain clusters of thousands of dedicated servers

that run web caches like memcached [24] that serve a wide

variety of real-time and batch applications. Smaller com-

panies use caching-as-a-service providers such as Elas-

tiCache [1], Redis Labs [5] and Memcachier [4]. These

multi-tenant cache providers may split a single server’s

memory among dozens or hundreds of applications.

Today, cache providers partition memory statically

across multiple applications. For example, Facebook,

which manages its own cache clusters, partitions applica-

tions among a handful of pools [9,39]. Each pool is a clus-

ter of memcached servers that cache items with similar

QoS needs. Choosing which applications belong in each

pool is done manually. Caching-as-a-service providers

like Memcachier [4, 18] let customers purchase a cer-

tain amount of memory. Each application is statically

allocated memory on several servers, and these servers

maintain a separate eviction queue for each application.

2.1 Partitioned vs Pooled

We compare two different resource sharing schemes with

memcached using simulation1: the static partitioning used

by Memcachier, and a greedy pooled memory policy, both

using memcached’s slab allocator with LRU. In the static

partitioning, we run applications just as they run in our

commercial Memcachier trace; each is given isolated ac-

cess to the same amount of memory it had in the trace.

In the pooled policy, applications share all memory, and

their items share eviction queues. An incoming item from

any application evicts items from the tail of the shared

per-class eviction queues (§2.2), which are oblivious to

which application the items belong to. We use a moti-

vating example of three different applications (3, 5 and

7) selected from a week-long trace of memcached traffic

running on Memcachier. These applications suffer from

bursts of requests, so they clearly demonstrate the trade

offs between the partitioned and pooled memory policies.

1Source available at http://github.com/utah-scs/lsm-sim/
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Hit Rate

App Partitioned Pooled

3 97.6% 96.6%

5 98.8% 99.1%

7 30.1% 39.2%

Combined 87.8% 88.8%

Table 1: Average hit rate of Memcachier’s partitioned and

pooled policy over a week.
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Figure 1: Miss rate and cache occupancy of Memcachier’s

partitioned and pooled policies over time.

Table 1 shows the average hit rates over a week of

the three applications in both configurations. Figure 1

depicts the average miss rate and cache occupancy over

the week. The pooled policy gives a superior overall hit

rate, but application 3’s hit rate drops 1%. This would

result in 42% higher database load and increased latencies

for that application. The figure also shows that the pooled

scheme significantly changes the allocation between the

applications; application 3 loses about half its memory,

while application 7 doubles its share.

2.2 Slab Allocation Limits Multi-tenancy

Ideally, a multi-tenant eviction policy should combine

the best of partitioned and pooled resource sharing. It

should provide performance isolation; it should also al-

low applications to claim unused memory resources when

appropriate, so that an application that has a burst of re-

quests can temporarily acquire resources. This raises two

requirements for the policy. First, it must be able to dy-

namically arbiter which applications can best benefit from

additional memory and which applications will suffer the

least when losing memory. Second, it needs to be able to

dynamically reallocate memory across applications.

Unfortunately, allocators like memcached’s slab allo-

cator greatly limit the ability to move memory between

applications, since items of different sizes are partitioned

in their own slabs. The following example illustrates the

problem. Imagine moving 4 KB of memory from applica-

tion 1 to application 3. In the trace, the median item size

for application 1 and 3 are 56 B and 576 B, respectively.

In Memcachier, each 1 MB slab of memory is assigned

a size class; the slab is divided into fixed sized chunks

according to its class. Classes are in units of 64× 2i up to

1 MB (i.e. 64 B, 128 B, . . ., 1 MB). Each item is stored

in the smallest class that can contain the item. Therefore,

items of 56 B are stored in a 1 MB slab of 64 B chunks,

and 576 B are stored in a 1 MB slab of 1 KB chunks.

There are two problems with moving memory across

applications in a slab allocator. First, even if only a small

amount needs to be moved (4 KB), memory can only be

moved in 1 MB units. So, application 1 would have to

evict 1 MB full of small items, some of which may be hot;

memcached tracks LRU rank via an explicit list, which

doesn’t relate to how items are physically grouped within

slabs. Second, the newly reallocated 1 MB could only

be used for a single item size. So, application 3 could

only use it for items of size 256-512 B or 512-1024 B.

If it needed memory for items of both sizes, it would

need application 1 to evict a second slab. Ideally, the

cache would only evict the bottom ranked items from

application 1, based on application 1’s eviction policy,

which have a total size of 4 KB. This problem occurs

even when assigning memory between different object

sizes within the same application.

This motivates a new design for a multi-tenant cache

memory allocator that can dynamically move variable

amounts of memory among applications (and among dif-

ferent object sizes of the same application) while preserv-

ing applications’ eviction policy and priorities.

3 Design

Memshare is a lookaside cache server that supports

the memcached API. Unlike previous key-value caches,

Memshare stores items of varying sizes and applications

physically together in memory, and uses a cleaner running

in the background to remove dead items. When the cache

is full, it decides which items to evict based on the items’

eviction priorities and how effectively each application

uses its share of the cache.

Memshare is split into two key components. First,

Memshare’s arbiter must determine how much memory

should be assigned to each application (its targetMem).

Second, Memshare’s cleaner implements these assign-

ments by prioritizing eviction from applications that are

using too much cache space.

3.1 The Cleaner and Arbiter

Memshare’s in-memory cleaner fluidly reallocates mem-

ory among applications. The cleaner finds and evicts

the least useful items for any application from anywhere

in memory, and it coalesces the resulting free space for

newly written items. This coalescing also provides fast

allocation and high memory utilization.
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HeadLog Segments

Hashtable/

Assoc Arbiter

Cleaner

- tracks per app stats

- approximates hit rate gradients

- sets new application allocations

- enforces allocation allotments

- relocates items to compact space

- evicts less useful items to free space

Figure 2: The Memshare design. Incoming items are allocated

from the head of a segmented in-memory log. The hash table

maps keys to their location in the log. The arbiter monitors

operations and sets allocation policy. The cleaner evicts items

according to the arbiter’s policy and compacts free space.

All items in Memshare are stored in a segmented in-

memory log (Figure 2). New items are allocated contigu-

ously from the same active head segment, which starts

empty and fills front-to-back. Once an item has been

appended to the log, the hash table entry for its key is

pointed to its new location in the log. Unlike slab alloca-

tor systems like memcached, Memshare’s segments store

items of all sizes from all applications; they are all freely

intermixed. By default, segments are 1 MB; when the

head segment is full, an empty “free” segment is chosen

as head. This accommodates the largest items accepted

by memcached and limits internal fragmentation.

When the system is running low on free segments

(< 1% of total DRAM), it begins to run the cleaner in the

background, in parallel with handling normal requests.

The cleaner frees space in two steps. First, it evicts items

that belong to an application that is using too much cache

memory. Second, it compacts free space together into

whole free segments by moving items in memory. Keep-

ing a small pool of free segments allows the system to

tolerate bursts of writes without blocking on cleaning.

Memshare relies on its arbiter to choose which items

the cleaner should prefer for eviction. To this end we

define the need of each application as its need for memory:

need(app) =
targetMem(app)

actualMem(app)

Where actualMem is the actual number of bytes cur-

rently storing items belonging to the application, and

targetMem is the number of bytes that the application

is supposed to be allocated. In the case of partitioned

resource allocation targetMem is constant. If the need

of an application is above 1, it means it needs to be allo-

cated more memory. Similarly, if the need is below 1, it

is consuming more memory than it should. The arbiter

ranks applications by their need for memory; the cleaner

prefers to clean from segments that contain more data

from applications that have the lowest need. Items in a

segment being cleaned are considered one-by-one; some

are saved and others are evicted.

Cleaning works in “passes”. Each pass takes n distinct

segments and outputs at most n−1 new segments, freeing

up at least one empty segment. This is done by writing

back the most essential items into the n − 1 output seg-

Algorithm 1 Memory relocation

1: function CLEANMEMORY(segments, n)

2: relocated = 0

3: residual = (n - 1) · segmentSize

4: while segments not empty do

5: app = arbiter.maxNeed()

6: item = maxRank(segments, app)

7: segments.remove(item)

8: if item.size ≤ residual - relocated then

9: relocate(item)

10: relocated = relocated + item.size

11: app.actualMem = app.actualMem + item.size

12: else

13: break

14: end if

15: end while

16: end function

n Segments

Max Need?

Arbiter Cleaner

App 3
Max Rank?

Key 9

Key 5

Rank 0

Key 7

Rank 1

Key 2

Rank 0

Key 9

Rank 2

Key 4

Rank 0

n - 1 Segments

Key 14

Rank 1

Key 10

Rank 1

Key 6

Rank -∞

Key 7

Rank 3

Key 2

Rank 3

Key 7

Rank 1

Key 14

Rank 1

Key 9

Rank 2

App 1 App 2 App 3

Figure 3: Memshare relocates items from n segments to n− 1
segments. The arbiter first chooses the application with the

highest need, and the cleaner relocates the item with the highest

rank among the items of that application.

ments. The writing is contiguous so free space, caused by

obsolete items that were overwritten, is also eliminated. n

is a system parameter that is discussed in Section 6. Note

that multiple passes can run in parallel.

In each pass, Memshare selects a fraction of the seg-

ments for cleaning randomly and a fraction based on

which segments have the most data from applications

with the lowest need. Random selection helps to avoid

pathologies. For example, if segments were only chosen

based on application need, some applications might be

able to remain over provisioned indefinitely so long as

there are worse offenders. Based on experience with the

Memcachier traces, choosing half of the segments ran-

domly avoided pathologies while tightly enforcing arbiter

policies.

Once a set of segments is selected for cleaning, the

cleaner sorts the items in the segments by rank to de-

termine which items should be preserved. Figure 3 and

Algorithm 1 show how this is done in a single cleaning

pass. segments is a list of all the items from the segments

being cleaned in the pass. In order to choose which item to

relocate next, the cleaner first determines the application

that has the highest need (maxNeed). Among the items in

the segments that belong to that application, the cleaner

then chooses the item with the highest rank (maxRank,

e.g. LRU-rank). It relocates the item by copying it and

updating its entry in the hash table. After the item is relo-

cated, the need for that application is recalculated. The
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process is repeated until the n− 1 segments are full or all

items are relocated. The remaining items are evicted by

dropping them from the hash table, and the need for the

applications’ whose items were evicted is adjusted.

Memshare can use any generic ranking function on

items to prioritize them for eviction; in fact, it can be

determined by the application. Memshare supports any

ranking function rank(t, f), that is based on the times-

tamp t of the last access of each item and f the number

of times it has been accessed. For example, to implement

LRU, the ranking function is rank(t) = t; that is, it is

the item’s last access timestamp. LFU is just the number

of accesses to an item: rank(f) = f . Segmented LRU

can be implemented as a combination of the timestamp of

the last access of the item and the number of times it has

been accessed. Throughout the paper, when evaluating

the hit rate of different caches, we use LRU as the default

eviction policy.

A key idea behind Memshare is that memory partition-

ing is enforced by the decision of which items to clean,

while any application can write at any time to the cache.

Consider the case where Memshare is configured for a

static partitioning among applications, and one applica-

tion continuously writes new items to the cache while

other applications do not. Allocations are static, so target-

Mem will remain constant. As the first application inserts

new items, its actualMem will increase until its need

drops below the need of the other applications. When the

memory fills and cleaning starts, the arbiter will choose

to clean data from the application that has the lowest need

and will begin to evict its data. If there are other active

applications competing for memory, this application’s

actualMem will drop, and its need will increase.

3.2 Balancing Eviction Accuracy and Cleaning

The cost of running Memshare is determined by a trade off

between the accuracy of the eviction policy, determined

by the parameter n and the rate of updates to the cache.

The higher the rate of updates, the faster the cleaner must

free up memory to keep up. Section 6.1 evaluates this

cost and finds for the trace the cleaning cost is less than

0.01% utilization for a single CPU socket. Even so, the

cleaner can be made faster and cheaper by decreasing n;

decreasing n reduces the amount of the data the cleaner

will rewrite to reclaim a segment worth of free space.

This also results in the eviction of items that are ranked

higher by their respective applications, so the accuracy

of the eviction policy decreases. In our design, n can be

dynamically adjusted based on the rate of updates to the

cache. Web cache workloads typically have a low update

rate (less than 3%) [39].

The last of the n−1 segments produced by the cleaning

pass may be less than full when there are many dead items

in the original n segments. The new n− 1 segments are

sorted based on need and rank, so one optimization is

to evict the items in last segment if its utilization is low

(< 50%) since it contains low rank and need items.

4 Memshare’s Sharing Model

Memshare allows the operator to fix a reserved amount

of memory for each application. The rest of the cache’s

memory is pooled and dynamically assigned to the ap-

plications whose hit rates would benefit the most from

it. Each application’s reserved memory we call reserved-

Mem; the remaining memory on the server is pooledMem,

shared among the different applications. At each point

in time, Memshare has a target amount of memory it is

trying to allocate to each application, targetMem. In the

case of statically partitioned memory, pooledMem is zero,

and targetMem is always equal to reservedMem for each

application.

targetMem defines an application’s fair share. The

resource allocation policy needs to ensure that each appli-

cation’s targetMem does not drop below its reservedMem,

and that the remaining pooledMem is distributed among

each application in a way that maximizes some perfor-

mance goal such as the maximum overall hit rate.

To maximize the overall hit rate among the applications,

each application’s hit rate curve can be estimated; this

curve indicates the hit rate the application would achieve

for a given amount of memory. Given applications’ hit

rate curves, memory can be reallocated to applications

whose hit rate would benefit the most. However, estimat-

ing hit rate curves for each application in a web cache can

be expensive and inaccurate [18, 19].

Instead, Memshare estimates local hit rate curve gradi-

ents with shadow queues. A shadow queue is an extension

of the cache that only stores item keys and not item values.

Each application has its own shadow queue. Items are

evicted from the cache into the shadow queue. For exam-

ple, imagine an application has 10,000 items stored in the

cache, and it has a shadow queue that stores the keys of

1,000 more items. If a request misses the cache and hits in

the application’s shadow queue, it means that if the appli-

cation had been allocated space for another 1,000 items,

the request would have been a hit. The shadow queue hit

rate gives a local approximation of an application’s hit

rate curve gradient [19]. The application with the highest

rate of hits in its shadow queue would provide the highest

number of hits if its memory was incrementally increased.

Algorithm 2 shows how targetMem is set. Each ap-

plication is initially given a portion of pooledMem. For

each cache request that is a miss, the application’s shadow

queue is checked. If key is present in the shadow queue,

that application is assigned a credit representing the right

to use to a small chunk (e.g., 64 KB) of the pooled mem-

ory. Each assigned credit is taken from another applica-

tion at random (pickRandom above). The cleaner uses
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Algorithm 2 Pooled memory: set target memory

1: function SETTARGET(request, application)

2: if request 6∈ cache AND

request ∈ application.shadowQueue then

3: candidateApps = {}
4: for app ∈ appList do

5: if app.pooledMem ≥ credit then

6: candidateApps = candidateApps ∪ {app}
7: end if

8: end for

9: pick = pickRandom(candidateApps)

10: application.pooledMem =

application.pooledMem + credit

11: pick.pooledMem = pick.pooledMem - credit

12: end if

13: for app ∈ appList do

14: app.targetMem =

app.reservedMem + app.pooledMem

15: end for

16: end function

Hit Rate

App Partitioned Memshare 50%

3 97.6% 99.4%

5 98.8% 98.8%

7 30.1% 34.5%

Combined 87.8% 89.2%

Table 2: Average hit rate of Memshare with 50% reserved

memory compared to the partitioned policy.

Reserved Memory Total Hit Rate

0% 89.4%

25% 89.4%

50% 89.2%

75% 89.0%

100% 88.8%

Table 3: Comparison of Memshare’s total hit rate with different

amounts of reserved memory for applications 3, 5, and 7.

targetMem to choose which applications to evict items

from. appList is a list of all applications in the cache and

cache is a list of all items in the cache.

Table 2 compares Memshare with the statically parti-

tioned Memcachier scheme. For Memshare, each appli-

cation is configured to use 50% of the memory that was

allocated to it in the original trace as reserved memory

with the rest as pooled memory. Memshare delivers equal

or better hit rates both application-by-application and

overall. Even with 50% of memory reserved, Memshare

also achieves a higher overall hit rate (89.2%) than the

greedy pooled memory scheme (88.8%, Table 1).

Table 3 and Figure 4 further explore the trade off be-

tween overall hit rate and per-application hit rates as we

vary the percentage of memory that is held reserved. The

figure shows that with more memory held reserved, re-

allocation between applications dampens. In addition,

the figure shows Memshare’s cleaner enforces the re-

App Credit Size Hit Rate Credit Size Hit Rate

3 64 KB 99.4% 64 KB 99.5%

5 128 KB 98.5% 64 KB 98.6%

7 192 KB 33.4% 64 KB 32.3%

Table 4: Assigning different credit sizes to each application

allows cache operators to prioritize among applications.

served memory allocation for each application: appli-

cations never fall below their reservations. The figure

also shows how Memshare’s memory allocation reacts

to the rate of shadow queue hits. In the far left graphs,

when the cache has no reserved memory, Memshare al-

locates pooled memory to the applications that have a

high shadow queue hit rate. As Memshare allocates more

memory to the bursty application, its shadow queue hit

rate tempers. In the far right graphs, when the cache is

fully reserved, Memshare cannot allocate any additional

memory to the bursty applications; therefore, the shadow

queue hit rate remains high.

Finally, Table 2 and 3 break down how much of

Memshare’s hit rate improvements come from its allo-

cator and how much come from its sharing model. With

100% reserved memory, Memshare is equivalent to static

partitioning, but it achieves a 88.8% hit rate compared to

87.8% for memcached: a 1% gain strictly due to the allo-

cator. Going from 100% reserved memory to 0% shows

a 0.6% gain. This shows that about 38% of Memshare’s

gains are from memory sharing. Note that effective shar-

ing also requires log-structured allocation.

4.1 Allocation Priority

Cache providers may want to guarantee that when cer-

tain applications have bursts of requests, they would get

a higher priority than other applications. In order to ac-

commodate this requirement, Memshare enables cache

operators to assign different shadow queue credit sizes

to different applications. This guarantees that if a certain

application has a higher credit size than other applications,

when it requires a larger amount of memory due to a burst

of activity, it will be able to expand its memory footprint

faster than other applications.

Table 4 demonstrates how assigning different weights

to different applications affects their overall hit rate. In

this example, application 7 achieves a higher relative hit

rate, since it receives larger credits in the case of a shadow

queue hit.

4.2 Increasing Efficiency for Reserved Memory

Pooled memory works for environments like Facebook’s

where multiple cooperative applications use a shared

caching layer, and the operator wants to provide the best

overall performance while providing minimum guaran-

tees to applications. However, in some environments,

applications are inherently selfish and would like to maxi-

mize their reserved memory, but the cache operator still
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Figure 4: Comparison of Memshare’s memory consumption and the rate of shadow queue hits with different amounts of memory

reserved for applications 3, 5 and 7. Memshare assigns more pooled memory to applications with a high shadow queue hit rate.

Algorithm 3 Idle tax: set target memory

1: function SETTARGET(app, taxRate, idleTime)

2: idleMem = 0

3: for item ∈ app do

4: if item.timestamp < currentTime - idleTime then

5: idleMem + = item.size

6: end if

7: end for

8: activeFraction = 1−
idleMem

app.actualMem

9: τ =
1− activeFraction · taxRate

1− taxRate

10: app.targetMem =
app.reservedMem

τ

11: end function

has an incentive to optimize for effective memory utiliza-

tion. If applications are “sitting on” their underutilized

reserved memory, their resources can be reassigned with-

out negatively impacting their performance.

To help with this, Memshare also supports an idle mem-

ory tax that allows memory that has not been accessed for

a period to be reassigned. Memshare implements the tax

with one small change in how the arbiter sets each appli-

cation’s targetMem. Algorithm 3 shows how the arbiter

computes targetMem for each application when the tax

is enabled; taxRate ∈ [0, 1] determines what fraction of

an application’s memory can be reassigned if it is idle.

If taxRate is 1, all of the application’s idle memory can

be reassigned (and its targetMem will be 0). If taxRate

is 0, the idle tax cache policy is identical to partitioned

allocation. Idle memory is any memory that has not been

accessed more recently than idleTime ago. The arbiter

tracks what fraction of each application’s memory is idle,

and it sets targetMem based on the tax rate and the idle

fraction for the application.

In this algorithm, targetMem cannot be greater than

reservedMem. If multiple applications have no idle mem-

ory and are competing for additional memory, it will be

Hit Rate

App Memcachier Partitioned Idle Tax

3 97.6% 99.4%

5 98.8% 98.6%

7 30.1% 31.3%

Combined 87.8% 88.8%

Table 5: Average hit rate of Memshare’s idle tax policy.

allocated to them in proportion to their reservedMem. For

example, if two applications with a targetMem of 5 MB

and 10 MB respectively are contending for 10 MB, the

10 MB will be split in a 1:2 ratio (3.3 MB and 6.7 MB).

Table 5 depicts the hit rate Memshare’s idle tax algo-

rithm using a tax rate of 50% and a 5 hour idle time. In the

three application example, the overall hit rate is increased,

because the idle tax cache policy favors items that have

been accessed recently. Application 5’s hit rate decreases

slightly because some of its idle items were accessed after

more than 5 hours.

5 Implementation

Memshare consists of three major modules written in C++

on top of memcached 1.4.24: the log, the arbiter and the

cleaner. Memshare reuses most of memcached’s units

without change including its hash table, basic transport,

dispatch, and request processing.

5.1 The Log

The log replaces memcached’s slab allocator. It provides a

basic alloc and free interface. On allocation, it returns

a pointer to the requested number of bytes from the current

“head” segment. If the request is too big to fit in the head

segment, the log selects an empty segment as the new

head and allocates from it.

Allocation of space for new items and the change of

a head segment are protected by a spin lock. Contention

is not a concern since both operations are inexpensive:
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allocation increments an offset in the head segment and

changing a head segment requires popping a new segment

from a free list. If there were no free segments, threads

would block waiting for the cleaner to add new segments

to the free list. In practice, the free list is never empty (we

describe the reason below).

5.2 The Arbiter

The arbiter tracks two key attributes for each applica-

tion: the amount of space it occupies and its shadow LRU

queue of recently evicted items. The SET request han-

dler forwards each successful SET to the arbiter so the

per-application bytes-in-use count can be increased. On

evictions during cleaning passes, the arbiter decreases the

per-application bytes-in-use count and inserts the evicted

items’ into the application’s shadow queue. In practice,

the shadow queue only stores the 64-bit hash of each

key and the length of each item that it contains, which

makes it small and efficient. Hash collisions are almost

non-existent and do no harm; they simply result in slight

over-counting of shadow queue hits.

5.3 The Cleaner

The cleaner always tries to keep some free memory avail-

able. By default, when less than 1% of memory is free

the cleaner begins cleaning. It stops when at least 1% is

free again. If the cleaner falls behind the rate at which

service threads perform inserts, then it starts new threads

and cleans in parallel. The cleaner can clean more aggres-

sively, by reducing the number of segments for cleaning

(n) or freeing up more segments in each cleaning pass.

This trades eviction policy accuracy for reduced CPU load

and memory bandwidth.

Cleaning passes must synchronize with each other and

with normal request processing. A spin lock protects the

list of full segments and the list of empty segments. They

are both manipulated briefly at the start and end of each

cleaning pass to choose segments to clean and to acquire

or release free segments. In addition, the cleaner uses

Memcached’s fine-grained bucket locks to synchronize

hash table access. The cleaner accesses the hash table to

determine item liveness, to evict items, and to update item

locations when they are relocated.

The arbiter’s per-app bytes-in-use counts and shadow

queues are protected by a spin lock, since they must be

changed in response to evictions. Each cleaner pass ag-

gregates the total number of bytes evicted from each ap-

plication and it installs the change with a single lock

acquisition to avoid the overhead of acquiring and releas-

ing locks for every evicted item. The shadow queue is

more challenging, since every evicted key needs to be

installed in some application’s shadow queue. Normally,

any GET that results in a miss should check the appli-

cation’s shadow queue. So, blocking operations for the

whole cleaning pass or even just for the whole duration

needed to populate it with evicted keys would be pro-

hibitive. Instead, the shadow queue is protected with a

spin lock while it is being filled, but GET misses use

a tryLock operation. If the tryLock fails, the shadow

queue access is ignored.

The last point of synchronization is between GET op-

erations and the cleaner. The cleaner never modifies the

items that it moves. Therefore, GET operations do not

acquire the lock to the segment list and continue to access

records during the cleaning pass. This could result in a

GET operation finding a reference in the hash table to

a place in a segment that is cleaned before it is actually

accessed. Memshare uses an epoch mechanism to make

this safe. Each request/response cycle is tagged at its start

with an epoch copied from a global epoch number. After

a cleaning pass has removed all of the references from

the hash table, it tags the segments with the global epoch

number and then increments it. A segment is only reused

when all requests in the system are from epochs later than

the one it is tagged with.

5.4 Modularity

Memshare maintains separation between the cleaner and

the arbiter. To do this, after a cleaning pass chooses

segments, it notifies the arbiter which items are being

cleaned. The arbiter ranks them and then calls back to

the cleaner for each item that it wants to keep. If the

relocation is successful, the arbiter updates the item’s

location in the hash table. Once the empty segments have

been filled with relocated items, the arbiter removes the

remaining entries from the hash table and updates per-

application statistics and shadow queues. In this way,

the cleaner is oblivious to applications, ranking, eviction

policy, and the hash table. Its only task is efficient and

parallel item relocation.

6 Evaluation

To understand Memshare’s benefits, we ran two sets of

tests. First, we ran a week-long multi-tenant Memcachier

trace with Memshare to measure hit rate gains and end-

to-end client-observed speedup. Second, we also bench-

marked the implementation with the YCSB [20] workload

to understand the overheads introduced by Memshare’s

online profiling and log cleaning.

Our experiments run on 4-core 3.4 GHz Intel Xeon

E3-1230 v5 (with 8 total hardware threads) and 32 GB

of DDR4 DRAM at 2133 MHz. All experiments are

compiled and run using the stock kernel, compiler, and

libraries on Debian 8.4 AMD64.

6.1 Performance

We tested the performance of Memshare using all the

major applications from the Memcachier trace with the

pooled memory and idle tax policies. Figure 5 presents
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Policy Combined Hit Rate Miss Reduction

memcached 84.66% 0.00%

Cliffhanger 87.73% 20.00%

Memshare Tax 89.92% 34.28%

Memshare Pooled 90.75% 39.69%

Table 6: Combined hit rate of Memshare’s idle tax (50% tax)

and pooled memory policy (75% reserved) compared with

Cliffhanger, which is the state-of-the-art slab-based cache and

Memcached. The miss reduction column compares the miss rate

of the different policies to memcached.

the hit rate results, and Table 6 presents the summary. The

pooled cache policy provides a higher overall combined

hit rate increase, since it tries to maximize for overall

hit rates. On average, Memshare reduces the number

of misses by 39.7%. With an average cache latency of

100 µs and database latency of 10 ms, this would result

in an average application-observed speedup of 1.59×

(average access time of 1,016 µs versus 1,619 µs). In

some cases, such as applications 7, 9, and 19, Memshare

provides more than a 20% hit rate improvement.

Our evaluation uses 1 MB segments and 100 candidate

segments for cleaning, the same as memcached’s default

slab and maximum item size. The number of candidate

segments was chosen experimentally (see Table 7); it

provides the best hit rate and results in less than 0.01%

memory bandwidth use. The pooled policy used 75%

of each application’s original Memcachier memory as

reserved with the rest pooled. Shadow queues were con-

figured to represent 10 MB of items. Idle tax policy was

set to a 50% tax rate with all memory reserved for each

application. For the pooled policy, we experimented with

different credit sizes. When credit sizes are too small,

pooled memory isn’t moved fast enough to maximize hit

rates; when they are too high, memory allocation can

oscillate, causing excessive evictions. We found a credit

size of 64 KB provides a good balance.

Table 7 presents the combined hit rate and cleaner mem-

ory bandwidth consumption of Memshare’s pooled mem-

ory policy when varying n, the number of segments that

participate in each cleaning pass. The table shows that

for the Memcachier traces, there is a diminishing increase

in hit rate beyond n=40. While memory bandwidth use

increases as the number of candidate segments is higher,

Segments (n) Hit Rate Memory Bandwidth (MB/s)

1 89.20% 0.04

10 90.47% 2.14

20 90.58% 2.86

40 90.74% 4.61

60 90.74% 6.17

80 90.75% 7.65

100 90.75% 9.17

Table 7: Combined hit rate and memory bandwidth use of top

20 applications in Memcachier trace using Memshare with the

pooled memory policy with 75% reserved memory and varying

the number of segments in each cleaning pass.

Policy Average Single Tenant Hit Rate

memcached 88.3%

Cliffhanger 93.1%

Memshare 100% Reserved 95.5%

Table 8: Average hit rate of the top 20 applications in the

trace run as a single tenant with Memshare with 100% reserved

memory compared with Cliffhanger and memcached.

near peak hit rates can be achieved for this trace while

consuming less than 0.01% of the memory bandwidth

of a single modern CPU socket. Even at 100 candidate

segments, the memory bandwidth of Memshare is less

than 10 MB/s for the top 20 applications in the trace.

6.1.1 Single Tenant Hit Rate

In addition to providing multi-tenant guarantees,

Memshare’s log structured design significantly improves

hit rates on average for individual applications on a cache

which uses a slab allocator. Table 8 compares the aver-

age hit rates between Memshare and two systems that

utilize slab allocators: memcached and Cliffhanger [19].

Within a single tenant application, Cliffhanger optimizes

the amount of memory allocated to each slab to opti-

mize for its overall hit rate. However, Memshare’s log

structured design provides superior hit rates compared

to Cliffhanger, because it allows memory to be allocated

fluidly for items of different sizes. In contrast, each time

Cliffhanger moves memory from one slab class to another,

it must evict an entire 1 MB of items, including items that

may be hot. On average, Memshare with 100% reserved

memory increases the hit rate by 7.13% compared to

memcached and by 2.37% compared to Cliffhanger.
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Latency

GET Hit GET Miss SET

memcached 21.44 µs 21.8 µs 29.48 µs

Memshare 22.04 µs 23.0 µs 23.62 µs

Table 9: Memshare and memcached access latency under an

artificial workload that causes high CPU load. Shadow queue

lookups increases latency in the case of GET cache misses.
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Figure 6: Tail latency distribution for Memshare/memcached.

6.2 Microbenchmarks

The Memcachier traces result in a low CPU utilization,

so we also ran microbenchmarks using the YCSB frame-

work [20] to stress CPU and memory bandwidth utiliza-

tion. All of the microbenchmarks use 25 B items with

23 B keys over 100 million operations. Measurements

always include the full cost of cleaning.

6.2.1 Latency

Table 9 shows the average response latency of Memshare

with a full cache and a running cleaner compared to mem-

cached. The clients and cache server are running on one

machine, so the measurements represent a worst case. Ac-

cess times are dominated by the network software stack

and round trip delay [42]. Memshare’s GET hit latency

is 2.8% slower than memcached, and GET misses are

5.5% slower due to the check for the key in the shadow

queue. Shadow queues are naı̈ve LRU queues, so this

could be mitigated. The additional latency on a miss is

hidden, since the application must access the database

which takes tens to hundreds of milliseconds.

Large-scale applications that exploit caches have high

request fan-out and are known to be sensitive to tail la-

tency [21, 39]. Figure 6 compares the tail latency of

Memshare with memcached. Despite Memshare’s slower

average latency, it improves 99th and 99.9th percentile get

hit response times from 91 to 84 µs and 533 to 406 µs,

respectively. Get miss tail latency is nearly identical be-

tween the systems; despite the extra cost of maintaining

the shadow queue, 99th and 99.9th percentile Memshare

response times are 4 µs faster and 9 µs slower than mem-

cached, respectively. 99th and 99.9th percentile set times

show the impact of the cleaner with Memshare showing

times 8 µs faster and 143 µs slower, respectively; most al-

location is faster, but occasionally allocation is delayed by

−3.9%

−2.2%

100% writes

5% writes

0 200 400 600 800

Throughput (Thousands of Operations Per Second)

W
o
rk

lo
a
d

System

Memshare

memcached

Figure 7: Average throughput of Memshare compared to mem-

cached under a YCSB workload with 5% writes and 95% reads

and under a worst case workload with 100% writes.

cleaning. Tail latency is often a concern for systems that

perform garbage collection, like flash solid-state drives;

Memshare is more robust against outliers since its critical

sections are small and it never holds shared resources

like serial channels to flash packages. Cleaning is fully

parallel and effectively non-blocking.

6.2.2 CPU and Throughput

Table 7 compares Memshare throughput with memcached

under a YCSB workload with 95%/5% reads/writes and

one with 100% writes. Memshare is 2.2% slower for the

first workload and 3.9% slower with all writes.

Most of the throughput loss is due to Memshare’s

cleaner. To breakdown the loss, we measured the CPU

time spent on different tasks. In the 5% write workload,

5.1% of the process’s CPU time is spent on cleaning, and

1.1% is spent testing shadow queues on GET misses. Note

that the 100% write workload is unrealistic (such a work-

load does not need a cache). With a 100% write workload

12.8% of the process’s CPU time is spent on cleaning.

The small decrease in Memshare’s throughput is well

justified. In-memory caches are typically capacity-

bound not throughput-bound, and operate under low

loads [16,18]. The Memcachier trace loads are two orders

of magnitude less than the microbenchmark throughput.

Cache contents are often compressed; the gains from

Memshare’s efficient allocation are orthogonal, and the

benefits can be combined since cleaning little CPU.

6.2.3 Memory Overhead and Utilization

Memshare has a small memory overhead. By default,

shadow queues represent 10 MB of items; the overhead

of the queues depends on the size of the items. Assuming

small items on average (128 B), one queue stores 81,920

keys. Queues only keep 8 B key hashes, so key length isn’t

a factor. The default overhead is 81,920 · 8 B = 640 KB

per application. The other structures used by Memshare

have a negligible memory overhead.

Memshare’s cleaner wastes some space by keeping

some segments pre-cleaned; however, this space only rep-

resents about 1% of the total cache in our implementation.

Even with some idle memory, Memshare is still better

than memcached’s slab allocator, since it eliminates the

internal fragmentation that slab allocators suffer from.

For example, in the trace, memcached’s fragmentation

restricts memory utilization to 70%-90%.
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7 Related Work

Memshare builds on work in memory allocation and

caching. Cliffhanger [19] estimated local hit rate curve

gradients to rebalance slabs of items of different sizes.

Memshare estimates local gradients to divide memory

among applications. Memshare’s log-structured allocator

achieves significantly higher hit rates than Cliffhanger

and flexibly moves memory across applications.

ESX Server [53] introduced idle memory taxation and

min-funding revocation [52] in the context of a virtual ma-

chine hypervisor. Ranking functions to determine cache

priorities were introduced by Beckmann et al [11] in the

context of CPU caches. Memshare is the first application

of both of these ideas to DRAM caches.

RAMCloud [45] and MICA [36] apply techniques from

log-structured file systems [15, 37, 44, 47, 48] to DRAM-

based storage. Log-structured caches have appeared in

other contexts, such as a CDN photo cache [51] and mo-

bile device caches [6]. Unlike these systems, Memshare

addresses multi-tenancy. Also, MICA relies on FIFO

eviction which suffers from inferior hit rates. Memshare

enables application developers to apply any eviction pol-

icy using their own ranking functions.

MemC3 [23] and work from Intel [35] improve mem-

cached multicore throughput by removing concurrency

bottlenecks. These systems significantly improve perfor-

mance, but they do not improve hit rates. In the case

of Facebook and Memcachier, memcached is memory

capacity bound, not CPU or throughput bound [16, 18].

Some caches minimize write amplification (WA) on

flash [22, 51]. As presented, Memshare would suffer high

WA on flash: low-need segments must be cleaned first,

resulting in near-random 1 MB overwrites, which are

detrimental for flash. Newer non-volatile media [2] may

work better for Memshare.

Resource Allocation and Sharing. FairRide [43] gives a

general framework for cache memory allocation and fair-

ness when applications share data. Data sharing among

competing applications is not common in key-value web

caches. For both Facebook and Memcachier, applications

each have their own unique key space; they never access

common keys. For applications that do not share data,

FairRide implements a memory partitioning policy in a

distributed setup. Memshare, unlike FairRide, can effi-

ciently use non-reserved and allocated idle memory to

optimize the hit rate of applications and provide them

with a memory boost in case of a burst of requests.

Mimir [46] and Dynacache [18] approximate stack dis-

tance curves of web caches for provisioning and slab class

provisioning, respectively. They do not provide a mecha-

nism for allocating memory among different applications

sharing the same cache.

Efforts on cloud resource allocation, such as

Moirai [50], Pisces [49], DRF [25] and Choosy [26] fo-

cus on performance isolation in terms of requests per

second (throughput), not hit rate which is key in deter-

mining speedup in data center memory caches [16]. Sim-

ilarly, there have been several projects analyzing cache

fairness and sharing in the context of multicore proces-

sors [27, 30, 31]. In the context of multicore, fairness is

viewed as a function of total system performance. Unlike

CPU caches, DRAM-based web caches are typically sepa-

rate from the compute and storage layer, so the end-to-end

performance impact is unknown to the cache.

Ginseng [8] and RaaS [7, 13] are frameworks for mem-

ory pricing and auctioning for outsourced clouds; they

only focus on pricing memory for applications that have

dedicated memory cache servers running on VMs. In con-

trast, Memshare enables applications to share the same

memory cache server, without the need for VM isolation.

This is the preferred deployment model for most web

application providers (e.g., Facebook, Dropbox, Box).

Eviction Policies. Many eviction schemes can be used in

conjunction with Memshare. For example, Greedy-Dual-

Size-Frequency [17] and AdaptSize [14] take into account

request sizes to replace LRU as a cache eviction algorithm

for web proxy caches. Greedy-Dual-Wheel [34] takes

into account how long it takes to process a request in the

database to improve cache eviction. EVA [10, 12] com-

putes the opportunity cost per byte for each item stored in

a cache. ARC [38], LRU-K [40], 2Q [29], LIRS [28] and

LRFU [32, 33], offer a combination of LRU and LFU.

8 Conclusion

This paper demonstrates there is a large opportunity to

improve key-value hit rates in multi-tenant environments,

by utilizing dynamic and fungible memory allocation

across applications. Memshare serves as a foundation

for promising future research of memory sharing in dis-

tributed cache environments. For example, the techniques

introduced in this paper are implemented within a sin-

gle server running multiple applications. Similar tech-

niques can be applied across servers, to determine the

appropriate dynamic resources allocated to each appli-

cation. Finally, key-value caches are being extended to

other storage mediums beyond memory, such as flash and

non-volatile memory. Running multiple applications on a

heterogeneous caching environment creates novel future

research challenges.
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