
ECHO: A Reliable Distributed Cellular Core Network
for Hyper-scale Public Clouds

Binh Nguyen⋆, Tian Zhang⋆, Bozidar Radunovic‡, Ryan Stutsman⋆
Thomas Karagiannis‡, Jakub Kocur†, Jacobus Van der Merwe⋆

⋆University of Utah, ‡Microsoft Research, †Core Network Dynamics

ABSTRACT

Economies of scale associated with hyper-scale public cloud
platforms offer flexibility and cost-effectiveness, resulting in
various services and businesses moving to the cloud. One
area with little progress in this direction is cellular core net-
works. A cellular core network manages the state of cellular
clients; it is a large distributed state machine with different
virtualization challenges compared to typical cloud services.
In this paper we present a novel cellular core network ar-
chitecture, called ECHO1, particularly suited to public cloud
deployments, where the availability guarantees might be an
order of magnitude worse compared to existing (redundant)
hardware platforms. We present the design and implementa-
tion of our approach and evaluate its functionality on a pub-
lic cloud platform. Analysis shows ECHO promises higher
availability than existing telco solutions.
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1 INTRODUCTION

Recent years have seen a tremendous uptake of cloud com-
puting. More and more companies move their services to
the public cloud to take advantage of the economies of scale,
the resource elasticity and scalability that the cloud offers.
In stark contrast, the telco industry today faces major chal-
lenges in equipment upgrading, scaling, and introducing new
services [20]. Cellular core networks are largely still based on
custom-built hardware mandated by the strict reliability re-
quirements posed by running a mobile core network [57, 63].
To alleviate these challenges, telcos and cellular opera-

tors are attempting to virtualize their core networks through
network function virtualization (NFV) [9]. Typically, this is
in the form of a move to a private-cloud setting, where the
telco provider has full control of the infrastructure and can
optimize the whole stack for its particular services. Indeed,
owning the whole cloud stack can allow for the addition
of specialized functionality for fault tolerance and manage-
ment [50, 51, 64]. However, this functionality typically im-
poses extra constraints on cloud design (e.g. imposes locality,
low-level network access). A super-optimized cloud stack for
a particular core service might not be able to scale to the size
of a public cloud, and may be at odds with the requirements
of a new service to be introduced. Telco providers will have
to manage and maintain the new private cloud deployments
and will not be able to take full advantage of the economies
of scale a public hyper-scale cloud deployment can offer.
Instead, the question we address is whether it is feasible

to implement a cellular core network on top of a hyper-scale

public cloud, such as Amazon AWS or Microsoft Azure. To
achieve this, one has to address three main challenges. First,
reliability - a typical public cloud availability SLAs are “four
9s” (i.e., availability of 99.99%) or less, but only if a service is
deployed across several VMs in different availability sets [6, 46].
In contrast, a cellular core network today often requires up
to five 9s reliability [18, 49], and comprises different mono-

lithic components. Such a reliability requires replication of
components across VMs and across multiple data centres.
Secondly, failover architectures in hyper-scale clouds are
very different from private data centers because of their
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scales. A typical fault detection in a public cloud is of order
of 10 seconds [7, 47], in order to limit false positives [26].
This is too slow for a cellular core whose timeouts are of
order of 1 second, hence we cannot apply the same fail-over
techniques from private telco clouds. Finally, a cellular core
requires consistency of mobile clients’ session state across
multiple network components and end-user devices. This
makes it fundamentally different than virtualizing middle-
boxes [22, 23, 58, 60] and other web services.
In this paper, we redesign the EPC’s control plane2 for

a hyper-scale public cloud deployment with three goals in
mind. First, it should provide high availability while taking
into account the unpredictability of the public cloud. Second,
it should be backward compatible with the existing hard-
ware and network deployments (phones and base stations).
Third, it should allow minimummodifications to the existing
EPC design and avoid any new dependencies of the cellular
signaling protocols which can and will change in time.
To this end, we introduce ECHO, a distributed network

architecture for the evolved packet core (EPC) on the public
cloud. We propose all ECHO components to be distributed
across multiple VMs as no single VM can provide sufficient
reliability. Each component (e.g., MME, SPGW) in ECHOmust
be redundant. However, redundancy introduces consistency
issues, which we found can also lead to customer-observed
unavailability. To solve this, ECHO lightly augments EPC
with extra information that can be used to detect stale states
and stale requests, allowing ECHO to enforce inter-VM con-
sistency. In sum, ECHO is available and provides consistent
operation as long as a majority of VMs, in a single or across
data centers, are reachable - regardless of whether failures
are due to software, host or network failure.

Our contributions can be summarized as follows:
• We propose ECHO, a distributed EPC architecture for the
public cloud that achieves availability superior to conven-
tional hardware EPC by continuing safe operation even in
the presence of software, host, network, or data center fail-
ures. ECHO uses conventional distributed systems techniques
to solve the availability with a focus on correctness. Its key
contribution is that it uses the techniques properly on an
unmodified EPC protocol while eliminating correctness is-
sues and edge cases that otherwise result from unreliable
and redundant components.
• The core of ECHO is an end-to-end distributed state ma-
chine replication protocol for a software-based LTE/EPC
network running on an unreliable infrastructure. ECHO en-
sures atomic and in order execution of side-effects across
distributed components using a necessarily reliable agent,
and atomic and in-order execution on cloud components.

2Throughout the paper, by EPC we refer to the EPC’s control plane.

Cloud components in ECHO are always non-blocking to en-
sure performance and availability.
•We demonstrate the feasibility of the proposed architecture
by implementing it in full. We implement and deploy the
entry-point agent software on a COTS LTE small cell [28].We
implement the required EPCmodifications intoOpenEPC [17]
and deploy ECHO on Azure.
• We perform an extensive evaluation of the system using
real mobile phones as well as synthetic workloads. We show
that ECHO is able to cope with host and network failures, in-
cluding several data-center component failures, without end-
client impact. From analytics, ECHO can promise higher avail-
ability compared to existing telco solutions. ECHO shows
performance comparable to commercial cellular networks
today. Compared to a local deployment, ECHO’s added relia-
bility introduces an overhead of less than 10% to latency and
throughput of control procedures when replicated within
one data center. We evaluate ECHO client on five base sta-
tions in a 3 months long live trial and show no observable
performance overhead.
To the best of our knowledge, ECHO is the first attempt

to run a cellular core on a public cloud and the first attempt
to replicate the LTE/EPC state machines in an NFV envi-
ronment. ECHO is a step toward relieving telcos from the
burden of managing their own infrastructure. We also hope
it will allow (small) operators to deploy cellular networks in
communities where it wasn’t previously economical to do
so.
2 BACKGROUND

This section presents a brief overview of the mobile core
control plane and makes an observation that, effectively,
the control plane implements multiple distributed state ma-
chines, one per user.
2.1 Mobile Core Network Control Plane

Control Plane Components: The control plane of the cellu-
lar network does not participate in packet forwarding. It
instead installs forwarding rules on the data plane. The main
component of the control plane in LTE/EPC is the Mobil-
ity Management Entity (MME) which authenticates mobile
clients (i.e., User Equipment – UE), sets up data plane con-
nection, and pages UE’s location. The data plane consists
of a base station (eNodeB), Serving Gateway (SGW) and a
Packet Gateway (PGW). Co-located with each data plane
component is a control plane component (i.e., eNodeB-C,
SGW-C, PGW-C) that coordinates with the MME and with
each other to implement a data path for the UE on the data
plane.
UE context: The network stores an UE context for each at-

tached UE which consists of subscriber information (authen-
tication key, UE’s capability), the current state (connected
or idle), and the data connection (Evolved Packet System
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Figure 1: Service Request procedure in LTE/EPC. After set-

ting up a Radio Control channel (i.e., RRC setup), the UE

sends a Service Request to the MME. The MME modifies its

UE context and sends a Modify Bearer Request (MBR) as a

side effect request to the Serving Gateway (SGW). This side

effect message sets up a tunnel endpoint for the UE on the

SGW and triggers another MBR to Packet Data Gateway

(PGW) to set up a tunnel endpoint on the PGW. If the MME

doesn’t receive a reply, a timer expires and the MME retries

(msg. #3,4). When the PGW, SGW acknowledges the MME

(msg. #6,7), the tunnel endpoints are past to the eNodeB (msg.

#8.) that set up a E-UTRAN Radio Access Bearer (ERAB) at

the eNodeB.

Component 1Request

Reply

Request

Reply}
Side effect (stateful change)

Request

ReplyLocal
State/Timers

Component 2
Local

State/Timers

Component 3
Local

State/Timers}
Side effect (stateful change)

Client/
Mobile
Device

Figure 2: Distributed state in core mobile network. Compo-

nents 1, 2 and 3 map to the MME, the SGW and the PGW in

Figure 1.

bearer or EPS bearer) of the UE. The UE context is stored
across the control plane components; the MME stores all of
the UE context, while the eNodeB-C, S/PGW-C only store
information of the data connection.

2.2 Mobile core: a distributed state

machine

The cellular control plane is a distributed state machine for
each UE, as illustrated on the Service Request example in
Figure 1. The state machine is distributed across multiple
components and a transition may involve communications
and state changes across multiple other components. The
control plane runs many such state machines in parallel, one
for each UE. A generalized depiction of this distributed state
machine is in Figure 2.
Specifically, the distributed state machine deals with the

following events and messages:
Request from UE: Most of the changes in the state ma-

chine are triggered by a client or mobile device. For example,
when an idle UE has data to send, it sends a Service Request
(message #1 in Figure 1) to the MME.

Side effect request & reply: Upon receiving a request from
a UE, the MME may alter the states at other components. In
the Service Request example above, the MME must set up
a bearer in the data plane. The MME sends a bearer setup
request to the SGW (msg. #2) which triggers another request
to the PGW (msg. #3). We call the messages that are gener-
ated by components in the cellular core, and are indirectly
triggered by the main request that originated in the UE, side
effect requests.

Timers: A state transition can also be triggered by a time-
out. For example, if a SGW does not respond to the bearer
setup request, the MME will trigger a retry when its timer
expires (msg. #4). This retry generates another side effect
request to the system. A timer can be set by any component,
if so required by the protocol.
3 RELIABILITY IN CLOUD-BASED EPC

Through examples, we show the strict reliability require-
ments of the cellular core network. We then present the
state of the art of reliability in the current cellular core net-
work. We contrast today’s cloud availability with hardware
reliability through a 3-month long study.

3.1 Mobile network reliability

requirements

We conducted experiments with a Nexus 5 mobile device,
an LTE eNodeB (ip.access smallcell) and the OpenEPC core
network to demonstrate the core network’s reliability needs.
The experiments also highlight the key requirements of the
cellular network that could be summarized as following: The
control plane components of the cellular network (1) must be
as highly available as possible, and (2) must process requests
from the UE atomically and in-order.
High availability: A service outage on an MME would also
be interpreted as a congested mobile network, so UEs are
required to back-off from the network. We demonstrate this
with an example scenario in which, after 5 unsuccessful
Attach attempts lasting 1 minute in total, the UE entered
silent state for 12 minutes before it retries to attach again.
Hence, a short MME outage can result in disproportionate
experienced outages in UEs. To illustrate this behavior, we
triggered the UE to attach to the LTE network and left a bug
in the MME so that the UE failed to attach. Figure 3a shows
the MME’s log with timestamps illustrating this experiment.
Persistent state: If the MME loses a UE context, it cannot
process UE requests, leading to a long outage on the UE3.
Unfortunately, the LTE protocol doesn’t deal with this state
inconsistency proactively; UE doesn’t reattach when detects

3While OpenEPC has an option to enable persistent UE state storage on
MME, naively enabling this feature is not sufficient to solve the consistency
issue described in the next example.
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13:09:47 mme_selection_pgw():331> Looking for [test.apn.epc] <failed>
13:09:58 mme_selection_pgw():331> Looking for [test.apn.epc] <failed>
13:10:10 mme_selection_pgw():331> Looking for [test.apn.epc] <failed>
13:10:21 mme_selection_pgw():331> Looking for [test.apn.epc] <failed>
13:10:33 mme_selection_pgw():331> Looking for [test.apn.epc] <failed>
{UE times out for 12 minutes}
13:22:34 mme_selection_pgw():331> Looking for [test.apn.epc] <failed>
13:22:45 mme_selection_pgw():331> Looking for [test.apn.epc] <failed>

(a)

17:05:26 mme_sm():1725> [1:NAS__Attach_complete]
17:06:14 mme_sm():1746> [59:S1__UE_Context_release_complete]
{ MME crashed, UE's state on MME was lost}
{ UE has data to send, trigger a Service Request}
17:10:01 mme_sm():1925> [09:EMM__Service_request] <failed>
{UE has no service for 54 minutes}
{ Periodical Tracking Area Update (TAU) timer (T3412) on UE times out after 
54 minutes from the last Attach Complete. This triggers a TAU procedure}
18:00:15 mme_sm():1725> [16:NAS__Tracking_area_update_request] <failed>
{ TAU request timed-out. UE triggers Attach Request}
18:00:30 mme_sm():1725> [2:NAS__Attach_request] <suceeded>
18:00:31 mme_sm():1725> [1:NAS__Attach_complete]
18:02:05 mme_sm():1925> [09:EMM__Service_request] <suceeded>
{ UE has service}

(b)

11:01:57 mme_sm():1725> [2:NAS__Attach_request]
11:01:58 mme_sm():1725> [1:NAS__Attach_complete]
{ UE attached}
{ UE switches OFF, triggers a Detach procedure}
11:03:45 mme_sm():1725> [6:NAS__Detach_request] <delayed 60s>
{ MME thread #1 received Detach Request, and holds for 60s without a progress}
{ UE switches ON, triggers an Attach procedure}
11:03:58 mme_sm():1725> [2:NAS__Attach_request] 
11:03:59 mme_sm():1725> [1:NAS__Attach_complete] <suceeded>
{ MME thread #2 received and processed the Attach Request sucessfully}
11:04:45 mme_sm():1725> [6:NAS__Detach_accept] <suceeded>
{ After 60s, MME thread #1 processed the stale Detach Request, and suceeded}
{ UE is detached from the network}
11:06:05 mme_sm():1925> [09:EMM__Service_request] <failed>
{UE has no service for 54 minutes}

(c)

Figure 3: Examples of real-world outages caused by reliability issues: (a) 5 consecutive Attach failures caused UE to sleep for

12 mins; (b) UE did not have service for 54 minutes because MME crashed and UE context was lost; (c) Violation of FIFO order

execution caused state inconsistency and 54 minutes outage.

this issue. We show experimentally that when the MME loses
the UE context, the UE loses connectivity for 54 mins!
Figure 3b shows the MME’s log with timestamps when

the MME loses context of an attached UE. The UE attached
to the network (17:05:26). The UE went idle due to inactivity
(17:06:14) while the MME still keeping its state. After this the
MME crashed and the UE context was lost. The UE went
from idle to active and requested for services but did not get
any service for 54 mins (from 17:10:01 to 17:54:03). 54 mins
after the Attach, the UE performed a periodic Tracking Area
Update (TAU) procedure (18:00:15) as defined in its protocol.
This TAU also failed because the MME does not have any
context of the UE. The result of this unsuccessful TAU is that
the UE timed out and moved to a “deregisterd” state which
requires the UE to reattach [1] (18:00:30). The Attach Request
let the UE exchanged its context with the MME. After having
the UE context, the MME was able to serve the UE as normal
(18:02:05), ending the extended UE service outage.
In-order message delivery and execution: If the mobile core
network execute requests from the UE in an out-of-order
manner, the state between the network and the UE will be
inconsistent which leads to a long outage. We demonstrate
this with an experiment in which a UE requests ⟨R1,R2⟩ but
the network executes the requests in a different order (i.e.,
⟨R2,R1⟩). This causes state inconsistency between the net-
work and the UE which results in a long outage.

Figure 3c shows the MME’s log describing this experiment.
After attaching to the network, the radio interface of the UE
was turned off to trigger a detach (11:03:45). That detach was
processed by a MME1 thread which is a slow MME thread.
Later the UE was turned on to trigger another attach request
which arrived at MME2 thread (11:03:58), updating the state of
the UE Context with the Attached state. This was successfully
verified by the MME2 and replied to (11:03:59). However,
the slow MME1 thread later was executed and updated the
UE Context with Detached state (11:04:45). The Detached
Accept message was ignored by the UE. This results in an

inconsistent state between the network (Detached) and the
UE (Attached). This caused a UE outage of 54 mins as in our
previous experiment.

3.2 Reliable EPC: state of the art

Telecom-grade reliable hardware is built with N +M redun-
dancy [18, 48, 49, 66]. Active-standby techniques [36] allow
for state synchronization (e.g., UE context) between the ac-
tive and standby instances with the active one switching
over to the standby one in case of a failure. This technique
is extended to an NFV setting where a resource scheduler
can quickly detect a fault and migrate service from a faulty
component [50, 51, 64].
Further redundancy is introduced at the protocol layer.

The standard EPC architecture supports a pool of MMEs [3]
behind a load balancer. If oneMME instance fails, the eNodeB
will notice that its Stream Control Transmission Protocol
(SCTP) connection to MME is broken and connect to another
MME instance in the pool. State (UE context) is either stored
in a common Session Restoration Server (SRS) [38, 39] or
synchronously replicated among MME instances [18]. This
mechanism, however, doesn’t deal with the out-of-order ex-
ecution problem. For example, if the SCTP connection of
a MME instance is broken (e.g., because of a network card
crash) while the instance is still active, the instance could
generate stale requests that might cause inconsistency.
There are several aspects of the existing designs which

do not map well to the public cloud infrastructure. In order
to allow for almost instantaneous fault isolation and repair,
hardware appliances and VNFs offer fine-grained availabil-
ity information and scheduling control (active standby or
service migration), low-level network access and assume
locality among instances of the same VNF. However, these
techniques do not apply to hyper-scale public clouds, where
instances often do not share the same rack, faults detection
are much slower because of false positives [7, 26, 47] and net-
work virtualization prevents standard approaches for fault
migration [33].
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Furthermore, due to higher inherent reliability of conven-
tional nodes, the types of faults that can occur are different.
Public clouds run all software on VMs that can delay ex-
ecutions (e.g., due to an upgrade), causing stale requests
and inconsistent side-requests (as in example 3c). Overall, a
public cloud EPC deployment has to deal with failures proac-
tively and in software. Our measurements in the next section
also suggest this.
3.3 Availability of public clouds

Cloud providers, such as AWS and Azure, do not advertise
availabilities of individual VMs but only of “availability sets”
of carefully selected VMs that belong to different fault and
upgrade domains. Even so, the advertised availability is “four
9s” – an order of magnitude larger total outage compared
to the five 9s availability of telco appliances. Besides the
overall availability in the number of 9s, the mobile network
reliability requirements outlined in Section 3.1 highlight that
the duration of an outage can be critical. For example, the
system may be able to recover from many short 1-second
outages using transport or other mechanisms, but a few
outages lasting minutes can be catastrophic (example 3a).
It is thus crucial to understand the availability properties
(total outage instances and their duration) of public clouds
in practice, beyond advertised SLAs.
To this end, we perform a 3-month long measurement

study in a major public cloud provider. We expect our find-
ings to be indicative of other providers as well. We monitor
the VM uptime and reachability at multiple levels: data cen-
ter (DC) cluster, single DC, and across DCs. A DC cluster (or
availability set) consists of three VMs in different availability
zones behind a load-balancer within the same regional data
center. There are two clusters per DC. In total, we use 3 DCs,
two in Europe and one in the US. We measure uptime and
reachability both within Azure and from the public Internet;
we generate TCP pings every 1 second from each VM to all
other VMs and use Azure’s Application Insights monitoring
service [42] to monitor VM reachability from the public Inter-
net. The service tests reachability of VMs every 10 minutes
from 10 locations across 4 continents. The cloud is available
if at least one VM in a cluster is available.
Results: Our results are in Table 1. Each row in the table
shows the observed availability constrained on an outage
duration (e.g., in row > 1 min we only account for outages
that are longer than 1 min – outages that would result in
12-min outages for UEs as in example 3a). We observed intra-
cloud outages of more than 1 second, 2,400 times during our
study. The Cumulative Distribution Function (CDF) of the
durations of such outages is depicted in Figure 4. In all, there
are 7 outages that last more than 1 minute and they can all
be attributed to VM failures. We observe that the advertised
SLAs of four 9s are generally met by the cloud.

Outage duration [s]
100 101 102 103 104

C
D

F

0

0.5

1

Same LB
Same DC
Other DC
World-wide

Figure 4: Outage duration distribution across all pairs of

VMs

The picture is significantly different from the Internet
(“World-wide” in Table 1). Availability is roughly an order of
magnitude less compared to intra-DC measurements, with
more than 20% of outages last 20 minutes or more. This
suggests that most “outages” are due to public Internet con-
nectivity problems reaching the cloud.
Implications: In summary, we observe that our five 9s avail-
ability can be achieved only if the service is replicated across
multiple VMs across availability zones in a single DC (columns 3,4,5

in Table 1); additionally, coping with public Internet reachabil-
ity problems requires service presence across multiple regional

data centers (column 9 in Table 1) unless a dedicated connectivity
service to the cloud [5, 41] is deployed which can incur extra
cost. In short, in order to deal with both VM failures and
public-facing connectivity issues, our design must be able to
replicate the service both within a DC and across multiple
DCs.

We note that themeasured availability exceeded the cloud’s
advertised SLA in some cases (columns 2,3,4,5). However,
this could be explained by the rather short duration of our
measurement (3 months). We also note that [25] also studies
public cloud reliability over a seven year period and points
out that a median reliability across 32 public clouds is below
99.9%, and that the median duration of an outage varies be-
tween 1.5 and 24 hours. This reinforces the need for software
replication and proactively dealing with the unpredictability
of public clouds.

4 ECHO DESIGN

MME

SGW PGW
Internet

(“regular”)

HSS

PCRF

SGWSGW PGWPGW

PCRFPCRFMMEMME

HSSHSS

Public'Cloud

Internet

(access:“backhaul”)

Figure 5: ECHO’s high level network deployment.

Figure 5 presents a high-level depiction of ECHO’s oper-
ation. ECHO moves the main components of EPC into the
cloud. The base station connects to a MME behind a public
cloud load-balancer via an Internet-based access “backhaul”.
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Cloud World-wide
Outage type VM DC Cluster DC Across DCs VM DC Cluster DC Across DCs
All four 9s five 9s five 9s five 9s three 9s four 9s four 9s five 9s
> 10 sec four 9s five 9s five 9s five 9s three 9s four 9s four 9s five 9s
> 1 min four 9s five 9s five 9s five 9s three 9s four 9s four 9s five 9s

Table 1: Inter-DC availability in a major cloud provider

1

n

LB
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Available
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Storage

Component 1

Component 2

{Stateless
processing {

State

{Idempotent
side effects

Base 
station

entry point

{"Necessary reliable"
device proxy

Mobile
Device

Component 3
Figure 6: ECHO Overview

The PGW in EPC provides “regular” Internet connectivity
also via the cloud load-balancer. We now discuss in more de-
tails the problem space, ECHO’s architecture and operation.

4.1 Problem space

As in §2.2, EPC is a distributed state machine comprised of
several components, each storing state for each user. ECHO
must achieve high availability (≥five 9s) compared to con-
ventional telco appliances despite VM and network failures.
Besides availability4, ECHOmust produce the same results as
the original core network that assumes reliable components
(i.e., correctness property). In particular, ECHO must execute
requests atomically and in the order that the (per-device) requests

arrive at the base station. ECHO must also scale to support a
large number of users. Finally, a particular challenge is that
one of the component that stores the state is a user’s mobile
device, which cannot easily be modified.

4.2 ECHO Overview

Figure 6 depicts an overview of ECHO. Each control plane
component (Components 1, 2 and 3 that correspond to MME,
SGW, and PGW) is replicated (instances 1 to n) behind a data
center load balancer (LB) [40, 52]. Each component instance
is refactored into a stateless processing frontend, paired with
a high availability persistent storage backend that maintains
state for all replicas (and all components). This allows quick
replacement of a malfunctioning component and scaling
based on demand.
At each base station, i.e., eNodeB, there is a “necessarily

reliable” entry point. This entry point is an assumed reliable

4ECHO uses consistent, linearizable storage. By the CAP theorem, it cannot
remain available under all network failures. However, using consensus it
is only offline when no majority of data centers hosting ECHO can com-
municate with one another. This is extremely rare (columns 5,9 in table 1);
such an extreme case would already likely result in a partitioned-away base
station.

component (§4.3) that (1) queues requests of the mobile de-
vice and tags them with a unique sequence ID for each request
and (2) keeps resending a request until receiving an acknowl-
edgment from the Component 1 (i.e., MME) before moving
to the next request.
In ECHO, the stateless instances of a component imple-

ment the same unmodified 3GPP LTE/EPC state machine.
Stateless instances use an optimistic, non-blocking approach
to enforce whole-operation atomicity. They can process the
same request in parallel without mutually blocking each
other. If an instance processing an operation fails, the nec-

essarily reliable agent timeouts and retries. Eventually, when
one instance makes progress (i.e., externalizes state in the
state storage), the component moves to the next state; other
instances processing the same request in parallel will abort
and discard any buffered changes if another instance has
already completed processing the operation.
Each component in ECHO processes requests from the

mobile device in-order using the sequence ID embedded in
the requests. During processing a request, if the component
generates a side effect to another component, then the se-
quence ID is also embedded in the side effect message. The
component receives the side effect uses the sequence ID to
guarantee the in-order execution. This happens at every com-
ponent to enforce in-order execution across all components.
More details about atomic and in-order execution are in § 4.4.
ECHO bears resemblance to other transactional systems

that leverage optimistic concurrency control [4], especially
those that have to deal with nested transactions on dis-
tributed state [37]. However, those systems have to deal with
general applications, so they are complex (and, consequently,
not commonly deployed in distributed environments). Since,
ECHO is tailored to EPC it is much simpler: it can rely on
the fact that UE state is partitioned, that UEs do not issue
concurrent requests, that UE operations are totally ordered
by a single entry point, and that UEs can only observe ef-
fects through transitions of the state machine (and never
through external effects). Together, these assumptions sim-
plify ECHO and remove the need for stronger transactional
isolation properties. This also makes ECHO more practical
to deploy since it can be built with off-the-shelf key-value
stores that are easy to deploy and scale.
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4.3 Necessarily reliable entry point

The ECHO entry point approach relies on the fact that the
base station (eNodeB) is a necessarily reliable component. Be-
cause the network connectivity of a mobile device relies on
wireless access to the base station, connectivity is lost if the
base station crashes; there is no point designing the system
to deal with base station failures. Therefore, since the entry
point is as reliable as the base station, it is seen as a “reliable”
component of the system.

The entry point agent is a thin software layer deployed on
a base station. It is similar to a sequencer in other distributed
databases [65], however, because ECHO needs only provide
atomicity and eventual completion of distributed operations,
it avoids the full complexity of a more general distributed
concurrency control. It provides the following functionality.
Sequential request IDs: The entry point assigns a sequen-
tial ID to each request from a given UE; different UEs have
independent ID sequences. The request is queued locally
and forwarded to the next component (the MME). The entry
point serializes the requests using a FIFO queue: the oldest
unacknowledged request is resent until it is acknowledged
and removed from the queue. The sequential IDs are used
to ensure that requests are processed at components in the
same order as the UE issued them.
Eventual completeness: After queuing a request, the entry
point persistently retries until the request is acknowledged
before moving to the next one. This ensures a component
failure in the cloud won’t be visible to the mobile device;
if an instance of a component crashes in the middle of an
operation, the entry point transparently issues a retry and
the retry will reach another instance of that component to
recover from the crash. As the entry point is the “reliable”
component, its retries ensure a request is eventually pro-
cessed and is processed by all core components regardless of
failures.
Reliable timers: Components in EPC must set a timer when-
ever they receive a request. However, if components crash
timers are lost. In ECHO, since the entry point is considered
reliable, components’ timers are maintained and triggered
by the entry point instead of by the components; after re-
ceiving a request, the component creates the timer event by
sending a set timer request to the entry point. The set timer
request includes a unique ID of the mobile device that the
timer applies to, a unique timer ID, and a timeout value; the
request ID of the event is returned. To cancel a timer event,
the component sends a cancel timer request with the user ID
and the previously returned request ID of the timer event.
State coordination with clients: Since request IDs are added
(and removed) at the entry point, unlike components, client
devices cannot rely on them to reliably receive correctly
ordered responses. A failed state update at a component may

produce a message that is sent to a client, and a retry may
produce another copy of the same message. This must be
handled by the entry point. Each client-bound reply is labeled
with a request ID and the sequence number of the message
within the request. The entry point ignores replies that have
already been forwarded to the client. Retries always produce
the same responses, but it is important that one and only
one gets forwarded. Necessarily reliability means the client
and the entry point can be expected to maintain a single,
ordered, reliable connection (e.g., TCP connection), which
safely deals with message loss on the last hop as long as the
entry point correctly orders replies.
Handovers: After a handover, the target entry point (target
eNodeB) must handle the client’s operations, so the request
ID must be transferred from the source eNodeB to the target
eNodeB. This could be done by augmenting the 3GPP Han-
dover procedure [3]. The old entry point embeds the client’s
current request ID in the Handover Required message which
is sent to the MME. The MME then forwards the state to the
target entry point in the Handover Request message. When
the client successfully associates with the target eNodeB (i.e.,
after it receives the Handover Confirm from the client), the
target entry point uses the transferred request ID for the
Handover Notify message and following messages.

4.4 Non-blocking cloud components

Given the requests with monotonic request IDs, ECHO needs
to guarantee atomicity and in-order execution properties
on each component and across components. Algorithm 1
shows how a ECHO component processes a request. Note
that the algorithm describes two types of components, with
and without side effects (§2.2), in a single algorithm. The
algorithm is designed to dovetail with required processing
in conventional EPC components; the red lines (14, 17, 18,
19) already exist in EPC components. The algorithm is non-
blocking; multiple stateless instances of a component execute
the algorithm in parallel without causing a stall on other
instances.
Component’s atomicity: Replication of components in ECHO
and retries from the entry point mean that a single request
could be processed by multiple instances of the same compo-
nent. To prevent inconsistency caused by interleaved process-
ing of the same request across instances, ECHO uses atomic
conditional writes provided by the persistent storage (we
discuss our persistent storage implementation in Section 5).
When committing changes to the reliable storage (line 22 in
the algorithm), each component instance ensures that the
stored UE context (session) remained unmodified while it
was processing the request by checking the version number
of the session. If the conditional write fails, then another
component instance has already processed the request, so
this instance discards the local session state and backs off.
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Algorithm 1 Non-blocking cloud component
Input event: Receive a request from eNodeB’s entry point (agent) R, with

UE’s ID (R.UE) and request ID (R.ID).
Output event: Send reply and timeout message to eNodeB’s agent.

1: Fetch session from storage: (session, version) = read(R.UE), where version
is version number of session.

2: if session not found in storage then
3: Create a session locally. Set session.ID = R.ID

4: Go to step 14.
5: end if

6: if R.ID < session.ID-1 then

7: {Received an obsolete request}
8: Return
9: end if

10: if session.reply and session.timer exist then
11: (Re)send session.reply and session.timer

12: Return.
13: end if

14: Update session.
15: Increment request ID: session.ID += 1

16: Set request ID in side effect msg: session.side_effect.ID=R.ID.
17: Send side effect message: session.side_effect.
18: Receive side effect reply.
19: Update session.
20: Prepare reply message: session.reply, set request ID in reply message

session.reply.ID = R.ID

21: Prepare timeout message: session.timer, set request ID in timeout mes-
sage session.timer.ID = R.ID

22: Write session to storage: write(session, version)
23: If write OK: Send reply and timeout messages: session.reply, session.timer

This assures that, even though multiple component instances
process the same request, only one instance is able to commit
the changes (step 22), guaranteeing atomicity.
Component’s in-order execution:A component in ECHO needs
to execute requests in the order that they arrive at the entry
point. However, concurrent retries of a request issued by the
entry point can cause processing of an obsolete message at
a component instance. Without care, this causes the state
in the session store to regress, leading to inconsistency, as
illustrated in Figure 3c.
A component in ECHO uses the monotonic request ID to

filter out obsolete requests. As in line 6 in the algorithm,
before processing a request, the component instance checks
if the request ID is less than the last executed request ID
(which is in the persistent storage). If it is, then the request is
obsolete and is discarded. When externalizes the persistent
storage, the component increments the session’s request ID
(line 15) and acknowledges the entry point (line 20).

E.g., in example 3c, the stale Detach Request at 11:04:45
would have been discarded as its request ID would have been
lower than the request ID of the Attach Request that is last
processed at 11:03:58.

Atomic and in-order execution across components: Given
each single component operates atomically and in order
as described, ECHO needs to ensure atomicity and in order
execution across its distributed components.
A side effect is triggered when one component processes

a request that generates a message to another component.
Consistency must be maintained across components despite
side effects, but retries from the entry point can create mul-
tiple duplicated side effect requests, and slow instances can
generate stale side effect requests. Without care, duplicated
and stale side effect requests could cause inconsistency.
Service Requests (Figure 1) illustrate the inconsistency

that can arise from duplicated side effect requests. Suppose
an MME instance A receives a Service Request. In step 17 of
algorithm 1, it sends a Modify Bearer Request (request #1) to
the SGW component. An SGW instance receives the request
#1, creates and installs a tunnel endpoint TEID1, stores it in
persistent storage and replies to the MME with the informa-
tion. Meanwhile, suppose that the entry point times out and
retransmits the Service Request. Another MME instance B

receives the retry and sends a duplicated Modify Bearer Request

(request #2) in step 17. Later a SGW instance receives the
request #2, and it overwrites and replaces TEID1 with a new
tunnel endpoint TEID2 and replies. The MME component
ignores the second reply because it already moved to a new
state when the first reply arrived. In the end, the MME com-
ponent (and the UE) contains TEID1 while the SGW records
TEID2; this inconsistency breaks the data plane.

To keep multiple duplicated side effect requests from mu-
tating component state, retries of a side effect must induce
the same effect on the target component (i.e., side effects must
be idempotent). Algorithm 1 enforces this. When a message
is processed, the response is recorded in the session store
with its corresponding request ID, so lost responses can be
reproduced without repeating execution. If an instance re-
ceives a request and the committed session in the persistent
storage contains a reply, then another component instance
has already executed the transaction, and it only needs to
reply (lines 10, 11, 12). Since responses are recorded in the
persistent storage, they can be obtained by other instances,
in case the current instance crashes before replying.

To solve the inconsistency problem caused by stale side ef-
fect requests, a component also passes the request ID of
received requests to the side effect requests it generates
(line 16). The target component then ensures the side effect
requests are executed in the order specified by the request
ID. This happens at every ECHO component, so no stale side
effect requests are processed.
Base station failures: If a base station fails, the mobile device
will connect to another nearby base station. The entry point
on the new base station needs to synchronize its sequence
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ID with the sequence ID in ECHO’s storage. However, given
the current sequence ID in the state storage is n, it is possible
that the old base station already begun propagating a request
n + 1 to the instances. To suppress the effects of this stale
request and to ensure each request has a unique id, ECHO
the new base station’s agent uses 2-phase protocol similar
to Paxos [34]. In the prepare phase, the entry point first asks
if the instances haven’t accepted request n + 1 and that they
will only accept a no-op n + 1 request. When all instances
are prepared, the entry point sends a no-op n + 1 to commit
the synchronization. It then sends other normal requests
with the sequence ID starting from n + 2. If any instance
has already seen the older request n + 1 it is returned to the
entry point, which aborts the commitment of the no-op and
reissues the discovered operation as n + 1.

4.5 Correctness

Component 
2

Component 
1 (leaf)

Write OK

State 
Storage

Reply n

Request n

... Write(n+1, version v) Before: (n), 
version (v)

After: (n+1), 
version (v+1)

Step 22

Step 23

1

2

Figure 7: ECHO’s leaf component is linearizable

Here we give a sketch of why ECHO is safe even though
components are redundant and non-blocking under failure.
Showing that ECHO appears to process operations atomically,
in client FIFO order, one-at-a-time demonstrates safety.
The proof first needs to show that a leaf component (a

component that does not trigger side effects to other com-
ponents) operates linearizably (i.e., serializable and in FIFO
order). It then uses induction, where the base case is the leaf
component, to show that every component in ECHO operates
linearizably and so does ECHO as a whole. Finally, because
the requests arrive at ECHO in the client FIFO order, ECHO
operates in client FIFO order.

Assumption 1 (Idempotent operation). Each leaf component

instance processes requests from other components idempotently; that

is, a retry causes the same effect on the component.

With the assumption of idempotent operation of a leaf
component, we prove that a leaf component operates lin-
earizably.

Lemma 4.1 (A leaf component is linearizable). Each transi-

tion on a leaf component instance is linearizable; that is, it processes

operations atomically in some total order consistent with the request

ID.

Proof. As shown in Figure 7, given that the update to the
shared State Storage is atomic, individually, each processed

request with ID n + 1 results in one of four outcomes: 1)
aborted-the component is not in state n or n+1, so the request
is invalid and ignored; 2) successful-the operation completes
successfully, the component instance updates the State Stor-
age, moves the component from state n to n+ 1 at step 22 and
replies; 3) crashed before update-the operation fails in 1 before
updating the state leaving the component in state n; or 4)
crashed after update-the operation fails in 2 after updating
the state leaving the component in state n+ 1 without a reply.
In case 3, because of the eventual completeness, there

must be another instance that progresses to either case 4
(in-completed) or case 2 (completed). In case 4, another com-
ponent instance when receives a retry, simply replies with
the recorded reply which eventually results in case 2. There-
fore, a component only executes requests in the specified
order, either completely successful or failed. □

Given that a leaf component operates linearizably, we can
show that ECHO system is linearizable.

Lemma 4.2 (ECHO’s linearizability). ECHO is linearizable;

that is, it appears to process operations atomically in some total order

consistent with the requests order of the client.

Proof. ECHO’s linearizability could be proved using induction
with the base case is the leaf component.

Base case: As in lemma 4.1, a leaf component operates lin-
earizably.

Induction hypothesis: Now assuming component M operates
linearizably, we need to prove component M + 1 operates
linearizably.

If there are multiple M + 1 instances trigger multiple side
effects on component M , the effect is linearizable as the in-
duction hypothesis. Therefore, component M + 1 operates
similarly to an ECHO’s leaf component, which is proved to
be linearizable. □

Lemma 4.2 can be immediately strengthened, since the
total order above is precisely mobile device’s FIFO order.

Lemma 4.3 (FIFO Processing). ECHO appears to processes opera-

tions atomically, in client FIFO order, one-at-a-time.

Finally, since the ordinary, unreplicated protocol precisely
processes messages atomically, in client FIFO order, one-at-
a-time, this gives the essential safety property:

Property 1 (ECHO Safety Property). The set of states observed
by ECHO clients is equivalent to the unreplicated protocol.

5 IMPLEMENTATION

Section 4 outlines general design principles ECHO uses to
provide safety and reliability. Here we discuss specifically
how this design applies to a cellular control plane and a
public cloud. The summary of changes to the standard EPC
architecture is illustrated in Figure 8.

ECHO agents: ECHO’s agents are lightweight software prox-
ies that provide entry-point functionality on eNodeB and an
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Figure 8: Modifications of ECHO in LTE/EPC

interface between eNodeB and MME. There are eNodeB’s
agent and MME’s agent, as illustrated in Figure 8. The eN-
odeB’s agent is implemented as a separate user-mode dae-
mon written in standard C (≈ 5,000 LOC), deployed on top
of embedded Linux running on a commodity small cell [28].
This allows us to easily port it to any COTS eNodeB with-
out affecting the time-critical LTE radio code. The MME’s
agent is integrated in the source code of the S1AP processing
module of OpenEPC [17].
One of the agent’s functions is to proxy S1AP control

messages. 3GPP eNodeB and MME use SCTP protocol for
S1AP messages. However, Azure and other public clouds do
not support SCTP protocol, so we implement a proxy agent
that replaces SCTP by TCP. The ECHO agent on the eNodeB
opens an SCTP connection to the rest of eNodeB software
stack on one side (which is unmodified and unaware of the
agent’s existence) and a TCP connection to an ECHO MME
agent on the other side. The eNodeB agent relays messages
between the two connections. The agent reestablishes the
TCP connection on a failure, in order to attach to a newMME
instance (in the same DC or a different DC).

Furthermore, the agent implements the entry point design,
described in Section 4.3. The agent adds an network layer
(ECHO or agent layer) into the LTE/EPC control plane stack
(Figure 8). The ECHO layer header consists of the Request ID;
a UE-ID, a unique identifier of the UE, composed of tunnel
identifiers readily available from S1AP messages; and a Timer

value, used to set up timers and to inform components about
timer expiry.

Stateless EPC components:We have augmented the most im-
portant EPC components (MME, SGWand PGW) inOpenEPC
[17] with ECHO functionality. In the example ofMME, our im-
plementation preserved the original implementation that ex-
tracts information from a received S1AP message, generates
side effects and updates the client’s state (e.g., steps 14, 17, 19
in the algorithm). We extended handlers to accept request
IDs from the ECHO layer and to add duplicate/stale request
checks that adapt processing accordingly (step 6). When the
original MME code finishes processing a request, ECHO sends
an acknowledgment to the eNodeB agent together with an

S1AP reply. We made SGW/PGW operations idempotent by
making the SGW reply with a stored message (i.e., with the
same bearer information) for duplicate requests from the
MME (so, the duplicates don’t forward effects to the PGW).
ECHO’s extensions to OpenEPC required changing 1,410 lines
in 12 files.

We added two additional blocks to the conventional EPC:
an agent (described previously) and a ZooKeeper client (ZK-
client). The ZK-client provides a read/write/delete interface to
a ZooKeeper [27] (ZK) cluster that acts as a reliable, persis-
tent storage. ZooKeeper is a reasonable choice of storage
because of its consistency guarantees, small amount of stored
information (a few KBs per UE context) and relatively low
request rate. The UE context (which is extended to include
UE replies) is stored as a binary string in a znode in ZK. ECHO
uses the version number of a znode in ZK to realize an atomic
state update at step 22 of the algorithm; ZK only allows up-
dating the znode if the version number hasn’t changed since
the beginning of the request.

Unique key for UE context: Each UE in ECHO should have a
unique key to identify the UE context in the storage. ECHO
uses the International Mobile Subscriber Identity (IMSI) of
the UE – a number embedded in the SIM card of each de-
vice which uniquely identifies a device in a network and never

changes – to be the name of the znode that stores the UE con-
text. The IMSI is included in the very first message (Attach
Request) from the UE. The ECHO’s MME extracts the IMSI
in the message and notifies the UE to use the IMSI as the
UE-ID for following requests.

Cloud deployment: Multiple instances of the same compo-
nent are deployed in a private network in Azure behind a
load balancer. The load balancer performs consistent hashing
on the connection’s 5-tuple, so a connection sticks with the
same instance unless there is a failure or a new instance is
added. When ECHO is deployed across multiple data cen-
ters, requests that time out a few times are retransmitted to
another data center by the ECHO agent on the eNodeB.

6 EVALUATION

We evaluate ECHO in the Azure public cloud across several
dimensions. We examine the correctness of our implemen-
tation, the latency introduced across various components
of the architecture, the observed throughput and simulate
potential failure scenarios. Our main findings are:
• We demonstrate that our cloud-based implementation cor-
rectly serviced 6,720 requests over one week without any
failures in the system. A 3-month trial with five smallcell
eNodeBs with maximum 14 users per eNodeB showed no
performance degradation on ECHO eNodeB agent. A through-
put test with 1000 emulated UEs showed good throughput
compared to conventional EPC.
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• ECHO introduced reasonable overheads as a trade-off for a
public-cloud reliable deployment. When replication within
a single data center was used, the response latency was in-
creased by less than 10% and there was no visible drop in
throughput. Even in more extreme deployments, we showed
that total latency was well below standard 3GPP timeouts
and would not be noticeable by users. The result showed
user-perceived latency was similar in ECHO and T-mobile.
• By emulating failures that are more extreme than typical
data centers’, we showed that ECHO gracefully handled all
such cases without service impact.
Evaluation setup. Our base deployment is given in Figure 9.
It consisted of radio equipments (a UE - Nexus 5 device, an
LTE eNodeB - ip.access E40 LTE smallcell [28]) in Phantom-
Net [10]. For a larger scale testing, we use 1000 emulated UEs
running on an emulated eNodeB to mimic a large number of
UEs. The ECHO EPC core ran on the Microsoft Azure cloud
on Standard_DS3 general purpose instances with 4 cores and
14GB memory [45]. The ECHO EPC core consists of an MME
pool with 2 MME instances, a ZooKeeper (ZK) cluster with
3 ZK nodes, and other EPC components – SGW, PGW, HSS –
all ran on Azure. We compared ECHO with a conventional
virtual EPC deployment, which was an OpenEPC Release
6 instance [17] – the most mature virtual EPC software as
we are aware of at the time of this evaluation – deployed in
PhantomNet.
Trial setup.We also had a trial deployment [43] with five E40
LTE small cells and 40 users. Since our full codebase wasn’t
production ready when we started the trial, we haven’t de-
ployed a full state replication system. We deployed and eval-
uated eNodeB and MME agent on all small cells.
Reliability options. We considered two availability options
as depicted in Figure 9: single data center – all ZooKeeper
nodes in the cluster were collocated in the same DC, and mul-
tiple data centers – ZK nodes were located in multiple DCs.
A single DC deployment provided less reliability but also
lower latency than a multi-DC deployment. We evaluated
both of them as both can be relevant for different applica-
tion scenarios. The network latency between the eNodeB
(deployed in PhantomNet) and Microsoft Azure was around
22 ms round-trip. The 3 Azure DCs used in our experiments
were 20 ms round-trip away from each other.

The reliability of ECHO also depends on ZooKeeper op-
erational parameters. We evaluated three ZK logging con-
figurations: synchronous disk (Disk), asynchronous disk logging
(Disk-nFC, no force sync) and logging to ramdisk (Ramdisk).
The synchronous disk logging is themost robust and quickest
to recover, but introduces most latency (because ZK logs to
disk synchronously which incurs I/O latency). The Ramdisk
and Disk-nFC configurations (log to disk but don’t wait be-
fore acknowledging) are two trade-offs that reduce latency
but also slightly reduce the ability and speed of recovery
(under extreme scenarios, data written to ZK could be lost
during crash due to the async-write). Table 2 shows the de-
ployment options and failure scenarios that they can tolerate.
We compared ECHO with OpenEPC which stores UE context
in memory. We also compared user perceived performance
of ECHO deployments and T-mobile. We introduced node
crashes and illustrated that ECHO was robust against failure
events.
Table 2: ZK configurations and cloud deployment options in

ECHO evaluation with their latency and reliability profiles.

The Disk-nFC and Ramdisk configurations have smaller la-

tency but can’t tolerate DC failures. The 3DCs cloud deploy-

ment has higher latency but can tolerate 1 DC failure.

Option

Latency Robust against failures

Node Avail. Zone DC

OpenEPC Low No No No
1DC,Disk Moderate Yes Yes No

1DC,Disk-nFC Low Yes Yes No
1DC,Ramdisk Low Yes Yes No
3DCs,Disk-nFC High Yes Yes Yes

Correctness and availability analysis.We deployed ECHO on
one Azure data center and ran it for 7 days. We periodically
generated a Service Request and a Context Release Request
every 3-minute period. In total, there were 6,720 Service and
Context Release requests (i.e., 20,160 S1AP messages) gen-
erated from a Nexus 5 device attached to a ip.access LTE
eNodeB. The system remained stable and all requests were
correctly processed. We next randomly introduced node re-
boot and process crash events happened on 1% of S1AP mes-
sages (i.e., mimicking two 9s availability of the DC, which is
orders of magnitude less available than the measured avail-
ability). ECHO recovered from crashes and proceeded all
S1AP messages successfully.
We were also interested in ECHO’s availability using the

measured data in § 3.3 and analytics. Multiple data cen-
ters have a high degree of failure independence, and cloud
providers try to extend that property to availability zones [44].
In practice, some degree of correlated failures are unavoid-
able, but assuming independence we can calculate ECHO’s
availability. While ECHO can’t assure the calculated 9s in
practice, the calculated result suggests ECHO’s promise of
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Figure 11: Latency vs. reliability trade-off: (a) Network latency CDF for ZooKeeper write. Baremetal showed optimal, non-

virtualized performance; (b) CDF of message latency for an Attach Request procedure with different deployments and differ-

ent ZK configurations; (c) UE-perceived latency for Attach Request procedure (top) and Service Request procedure (bottom),

compared with T-mobile

availability. Given p is the probability that a VM is avail-
able, the probability that a ZK ensemble (with 3 nodes) is
available is P(ZK) = p3 + 3p2(1 − p) (i.e., either 3 nodes are
available or 2 nodes are available and 1 node fails). With
p = 0.99947 (Table 1), P(ZK) = 0.999999. ECHO’s availability
also depends on the availability of each component. Given
a component with t presence points (i.e., DC clusters, ob-
served from the Internet), a component is available if at least
one DC cluster is available. Given q is the probability that
a DC cluster is available, ECHO’s component availability is
P(component) = 1 − (1 − q)t = 0.99999999 (with q = 0.99991 as
in Table 1 and t = 2). This suggests six 9s availability of
ECHO with 2 DC clusters and a ZK ensemble with 3 nodes
in different availability zones.
Latency. Figures 10a shows latency of an entire Attach (top)
and Service Request (bottom) procedures with different ZK
configurations running in a DC. The latency was broken
down into EPC core network – the latency incurred within
the EPC core (i.e., processing time and network time incurred
on EPC components and the ZK cluster); Network time – the
round-trip time between eNodeB and Azure; and Radio – the
latency to set up radio bearers on UE and eNodeB hardware.
Overall, ECHO introduced only about 7% (70ms) extra latency
for an Attach Request compared to OpenEPC. The overall
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Figure 12: An MME crash in a conventional EPC deploy-

ment resulted in a long outage for the UE (upper Figure).

In the other hand, despite the MME crash a ECHO deploy-

ment with two ECHOMME instances seamlessly proceeded

requests from the UE as if there were no failures (lower Fig-

ure).

latency was dominated by the radio configuration latency
between UE and eNodeB (i.e., RRC latencies).
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Individual message overheads. Figure 10b shows the latency
overhead ECHO introduced to each message exchanged be-
tween UE and MME in an Attach Request (left part) and
Service Request (right part). The odd-numbered messages
(i.e., 1-Attach Request, 3-Authentication Response, 5-Security
Mode Complete, 7-UE Information Response, 1-Service Re-
quest) were sent by the UE and processed by ECHO. The
even-numbered messages (i.e., 2-Authentication Request,
4-Security Mode Command, 5-UE Information Request, 8-
Attach Accept, 2-Context Setup Request) were sent by ECHO
and processed by the UE. The results confirmed that radio
bearer setup and authentication on UE (msgs. 2-left, 8, 2-
right) dominated the total procedure latency. Looking at
ECHO latency (i.e., msgs. 1-left, 3, 5, 7, 1-right) we can see a
latency trend among ECHO-Disk, ECHO-nFC and OpenEPC.
Overall, using disk logging incurred the most latency over-
headwhile using diskwithout force sync (Disk-nFC) incurred
less latency.
Reliability vs. Latency trade-off. Figure 10c shows latency of
an Attach Request with ZK deployed in a single DC and 3
DCs. Compared to the single DC deployment, ECHO with
multiple-DC deployments incurred extra latency because of
network latency between ZK nodes (40% or 400 ms more
for the Attach Request procedure). Note that the multiple-
DC deployment, however, can tolerate a single data center
outage. Depending on the response time and reliability char-
acteristics required, one may favor one option over the other.
For example, public Internet outages can simply be relayed
from reachable data centers if this is a viable option for a par-
ticular deployment. However, even with the most extreme
deployment, ECHO incurred overhead is still tolerable for UE
operating 3GPP protocols. We further probed into this by
showing the CDF of the latency of each ZK write (Figure 11a)
and each message on ECHO MME in an Attach Request pro-
cedure (Figure 11b). Replication to 3 DCs incurred 10× mes-
saging latency as it invoked several ZK writes. Yet, this was
still only a fraction of the total latency and well below the
smallest timeout value of an UE – 5s for T3417 (see section
10.2 in 3GPP NAS timers [1], 3GPP S1AP timers [2].)
UE-perceived latency. Figure 11c shows the latencies of At-
tach Request and Service Request procedures perceived by
a UE on ECHO and T-mobile. Since we couldn’t capture T-
mobile control messages inside their proprietary EPC de-
ployment, we measured the latency by triggering the Attach
Request and Service Request on the Nexus 5, using the same
methodology on both platforms for a fair comparison. To
trigger an Server Request we let the device idle to release its
radio connection, and then issued a ICMP request. We then
measured the UE-perceived latency as the RTT reported by
the first ICMP reply subtracted by the RTT of the follow-
ing ICMP reply which doesn’t include LTE control latency.
Note that these latencies include both the phone’s operating

system latency and control plane latency. Overall, latency
of a single-DC deployment of ECHO was comparable to T-
mobile. ECHO’s latency was worse than T-mobile if it was
deployed in 3 data centers. Because of potential differences
in authentication methods and radio performance of the E40
smallcell and T-mobile’s macro eNodeB, ECHO’s Attach was
faster while Service Request was slower than T-mobile.
Throughput. We measured throughputs of Attach Request
and Service Request procedures in ECHO and compared the
throughputs with OpenEPC using identical hardwares. We
used 1000 emulated UEs on an eNodeB to generate simulta-
neous requests until we saturated the systems and measured
the throughputs. For the two deployment scenarios (single
DC and across 3 DCs), the ECHO’s two throughput results
were similar to OpenEPC’s with ≈900 messages/s (figures
omitted). This confirmed that ECHO offered high availability
without scarifying the system’s throughput.
Failure scenarios. Figure 12 shows in detail how differently
OpenEPC and ECHO reacted to a failure. Under the conven-
tional EPC deployment in the upper Figure, the attached UE
was not able to use the network after the MME crashed; the
UE didn’t receive service despite sending Service Requests re-
peatedly from the 23rd minute until the 56th minute (denoted
by red crosses in the Figure). Only until the 56th minute into
the experiment, the UE issued a periodic Tracking Area Up-
date (TAU) and failed (denoted by the red diamond shape),
it then re-attached and succeeded (the blue triangle at the
56th minute). After the successful re-attach, the UE had ser-
vice again and the following Service Requests (blue round
dots after the 60th minute) were also successful. In total,
the UE experienced a 33-minute outage in the conventional
EPC deployment. On the other hand, in a ECHO deployment
with 2 MME instances in the lower Figure, the UE seam-
lessly had services as if the were no failures even when one
MME instance crashed. As in the lower Figure of Figure 12,
there were 2 MME instances, MME1 and MME2, running
in a ECHO deployment. At the 12th minute into the experi-
ment, we restarted the MME1 instance. The eNodeB received
a S1AP reset signal from the MME1 instance and reestab-
lished the S1AP connection with the MME2 instance (the
blue square at 12th minute). The UE’s Service Requests were
processed successfully by the MME2 (blue round dots after
the 12th minute). Note that the 1st Service Request after the
crash of the MME1 instance (at around 12th minute) had a
slightly higher latency. This was because the MME2 instance
didn’t has the UE’s context in its memory and had to fetch
the UE’s context from the ZK cluster, which resulted in the
extra latency.
eNodeB client. In order to test the overhead of the ECHO’s
eNodeB client, we deployed it on five IP Access E40 eN-
odeBs [28] running a live trial with 40 users. According to
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the specifications, each E40 eNodeB supports up to 16 con-
currently active users. The highest load we registered was 14
users per eNodeB. During the 3-month trial, we have not ob-
served any performance degradation in any of the eNodeBs.
We also observed that eNodeB client was able to quickly
re-establish TCP connection on intermittent failures without
eNodeB noticing, which avoided connection drops and made
network more stable.
7 DISCUSSION

End-to-end security: ECHO doesn’t break the end-to-end se-
curity contexts of EPC. ECHO adds another layer on top of
the EPC’s SCTP protocol and therefore adds an extra encap-
sulation out of the original S1AP packets. This extra encap-
sulation, however, is only visible to the ECHO layer and is
pealed off before the packet is delivered to the S1AP layer.
Since the keys and counters are kept in the central storage, a
new MME instance can fetch the information and continue
to process S1AP messages after failures.
Further optimizations to reduce latencies: ECHO introduced
latencies could be further reduced to support future low-
latency use cases. For example, using closer data centers
could reduce ZK read/write latencies. A closer integration
of a consensus protocol into Algorithm 1 could also reduce
the number of ZK writes.

8 RELATEDWORK

Our work is related to efforts in network function virtualiza-
tion in general [19, 21, 23, 67, 68], as well as more closely re-
lated virtualized mobile network efforts focused on resource
management and scalability [30, 53–55], orchestration of
virtualized core network functions [61], and virtualizing spe-
cific core network components [12]. PEPC [54] only deals
with data plane performance of the mobile core and doesn’t
consider reliability. Perhaps most closely related to ECHO are
the virtualized MME architectures proposed in SCALE [11]
and DMME [8]. SCALE and DMME proposed to horizontally
scale the MME using load balancing and state replication.
However, SCALE and DMME focus only on scalability of a
single (MME) component. They do not deal with reliability
issues – if an MME instance is slow or crashes, stale requests
could cause state inconsistencies.
Various studies have dealt with availability and reliabil-

ity concerns of cloud platforms [13, 14, 24, 25]. Alternative
approaches to our work to address these concerns include
mechanisms to make clouds inherently more reliable [62],
service abstractions to hide the complexities of dealing with
cloud failures from application developers [29] and attempts
to add specialized cloud features to deal with cloud fault toler-
ance [50, 51]. ECHO took a different approach to assume the
cloud infrastructure is not reliable and instead used software
and protocols to enhance availability.

ECHO’s replication strategies relate to state machine repli-
cation (SMR) [56], a well-known approach to building fault-
tolerant, highly available services [16, 27]. However, naively
reimplementing MME in replicated state machines does not
work. The side effects that an MME performs on state transi-
tions make this hard; the (distributed) effects fundamentally
cannot be atomic with the state change in the MME. If an
MME replica crashes in the middle of interacting with other
entities, then the intended effect may not have been achieved.
Another MME replica can’t know where to resume to avoid
duplicating effects. So the system must work correctly even
when side effects are performed more than once. SMR also
intertwines scaling, partitioning and fault-tolerance, since
state machines are stateful. SMR plays a role in ECHO, but in
the form of ZooKeeper’s [27] fault-tolerant atomic broadcast
protocol, Zab [31].

ECHO’s enforcement of FIFO and atomicity is similar to
virtually synchronous CBCAST from the ISIS toolkit [15].
However, ECHO is the first to combine atomic and FIFO
processing over distributed components in a cellular network
leveraging the reliable base station. The key challenge is in
minimizing changes to the existing EPC protocol and in
interactions with the outside UE, which cannot be modified.
Others observed this issue with clients in other contexts [35].
The necessary reliability between the UE and its eNodeB
simplify this, since the radio control link offers a reliable,
ordered connection with the UE. Setty et. al. [59] proposed
“locks with intent” for building fault-tolerant systems on
cloud storage. In ECHO, each client only affects its own state,
which eliminates the need for intents.

The idea of separating state from computation is also pro-
posed in StatelessNF [32]. Logical NF in StatelessNF, however,
is deployed in isolation, i.e., it assumes crash failures. Un-
like StatelessNF, ECHO is non-blocking on failure; because
conflicting operations are resolved at the state store, having
multiple components affecting the same state at the same
time is safe. This makes it safe ECHO to continue operation
even when nodes are slow rather than crashed.
9 CONCLUSIONS

We present ECHO, an architecture that provides the same
properties offered by the conventional LTE/EPC control
plane while promises higher availability despite failures.
ECHO is formally proved to be safe and could potentially
lower the cost of LTE/EPC when deploying on a public cloud.
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